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1 Background

The 21st century has been called the “century of data” [1]. As technology
progresses our ability to collect more and more data increases rapidly. Sci-
entists and engineers are now collecting data using hyper-spectral imaging,
DNA micro-arrays, biomedical spectroscopy, high definition video, as well as
many other new data modalities. All these sources generate heretofore un-
heard of masses of data. The task then becomes how to understand this sea
of data in order to make intelligent decisions based on it. This is becoming
a pervasive problem in modern science, and a true challenge for the data
analyst.

Traditional statistical science used to revolve around data with a large
number of samples (instances, individual records), and a relatively small
number of well chosen features (attributes) for each sample. For example,
a statistical survey may track the heights (a single feature - height) of 100
school age children (samples) in different locations to see how they vary. With
a few features and many samples robust and accurate statistical conclusions
can be reached. On the other hand, a cDNA micro-array experiment (a
modern biomedical assay that takes a “snapshot” of the activity of every
gene in an organism at a given time) can collect numbers representing the
expression level of 20 000 different genes (features) for each individual in the
experiment, but because of cost and availability of experimental subjects, the
experiment consists of only a handful, or at best a hundred distinct samples.

It is useful to think of samples as points in a space whose dimensionality
is the number of features in the problem. Thus, the DNA micro-array exam-
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ple above can be expressed as a few dozen or a hundred points lying in a 20
000 dimensional space. In such a high dimensional space, Bellman’s curse of
dimensionality applies. The few samples that are available cover the space
in an extremely sparse manner, making traditional statistical analysis diffi-
cult or impossible, without additional structure. Fortunately, this additional
structure is often available. High dimensional experimental data often lie on
relatively low dimensional sub manifolds of the ambient space, for a variety
of reasons.

2 The Problem

For the sake of specificity we restrict ourselves to one type of data for this pro-
posal, cDNA microarrays. Microarrays are a relatively new technology that
allow a scientist to determine the expression, or level of activity of many, or
even all genes in the cells of a tissue sample. For a primer on this technology
see, for example, http://www.ncbi.nlm.nih.gov/About/primer/microarrays.html.
A typical microarray experiment will measure the expression levels of tens
of thousands of genes (and often other DNA sequences) over a few dozen or
perhaps a hundred samples. This technology can be applied to determine the
relative expression levels of, for example, genes involved in the progression
of cancer [2], or central nervous system genes involved in the host response
to infection with scrapie [3] or a host of other diseases.

Genes exist in regulatory networks where the product of one gene serves
to promote or inhibit the expression levels of others. Thus one expects there
to be hidden patterns in gene expression data that allow some information
about these networks to be determined. Given the immense amount of data
involved with each sample, however, it is difficult for an experimentalist to
make sense of the data. The hope is to be able to use mathematical techniques
to reduce the dimensionality and complexity of the microarray data, while
at the same time distorting the data as little as possible.

A microarray dataset can be thought of as a number of data points n
(the number of experimental samples) contained in a space of dimension
m (the number of genes whose expression levels are being measured, where
m >> n). Is it possible to find a low dimensional manifold of dimension k
(where k < n) that approximates these points well? How does one estimate
the intrinsic dimension of this manifold? How is it identified? How is it
parameterized? How does one know when such a manifold exists? Given



the existence of such a manifold, how does one project the data onto this
manifold, and analyze it? How can one validate that the manifold identified
is in fact a good representation to the data? How does the uncertainty in
the data influence identifiability of all the things we want to know about the
manifold?

Work has been done on dimensionality reduction for quite a while. Princi-
pal component analysis (PCA) allow data to be reduced to a low dimensional
set capturing the most variance, and many more recent algorithms build and
extend on this framework. More recently, several researchers have proposed
methods for nonlinear reduction to a low dimensional spanning manifold [4]
[5], but these methods are limited in their reconstruction ability, and don’t
seem to perform well on the massive reduction (from hundreds of dimensions
down to a handful) and sparse data associated with microarray applications.

The industrial applications of an algorithm to identify such a low di-
mensional spanning manifold are immense. Algorithms that help researchers
make sense of gene expression data will give deeper understanding of the
working of the cell, and drive drug discovery and medical technology for
many years.
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