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I. Linear series and secant planes

In my thesis, I studied linear series on curves,
and tried to understand their ‘“secant-plane”
behavior in families.

To be concrete: say C C PP is a curve. The
family of lines meeting C' has expected codi-
mension 1 in G(1,3). So, since G(1,3) is 4-
dimensional, we'd expect C to have finitely
many quadrisecant lines, and no quintisecants.

The Italians computed the expected number
of quadrisecants to be

Q= %(d—Q)(d—3)2(d—4)—%g(d2—7d—|—13—g).

Now step back: view C not via its embedding
in ]P>3, but rather as an abstract curve equipped



with a 3-dimensional linear series (L, V'), where
L is a line bundle and V ¢ H9(C,L) is a sub-
space of the complete series defined by L. Then

P1Po2P3P4 IS @ quadrisecant line
&
rk(V =5HO(L/L(—p1 — po — p3 — pa))) = 2.

More generally, given any curve C' equipped
with a linear series (L,V), the image of C wiill

have a d-secant (d — r — 1)-plane spanned by
p1,---,pq Whenever the evaluation map

v 25 HO(L/L(=p1 — - — pa))
has rank (d — ).
Today we'll study secant-plane behavior of curves

that vary in families, with an eye to study-
ing effective divisors on the moduli space of



curves associated with codimension-1 secant-
plane behavior.

Remarks:

e 2 aspects to the study (qualitative and quan-
titative). Want to compute classes of ef-
fective divisors on ﬂg corresponding to curves
with linear series with secant planes in codi-
mension 1. So need to solve enumerative
problems involving l-parameter families of
curves. But enumerative calculations only
hold significance provided that on a general
curve, there is no codimension-1 secant-
plane behavior.

e For the toy “quadrisecants’ example, enu-
merative significance wasn'’t established un-
til 1980's.



II. Effective divisors on the moduli space
Recall: M, is a (39— 3)-dimensional projective
variety. It compactifies the space of smooth
curves of genus g, by allowing curves to be-
come slightly singular (stable).

The Picard group of M, is generated over Q
by classes A,cSO,...,(SLg/QJ. When g > 2, the
classes are linearly independent, while if g = 2,
“Mumford’s relation”

10X —6g—261 =0
holds.

Why should we care about effective divisors on
the moduli space?

Motivation from birational geometry: Given
g > 2, is My of general type?



Harris and Mumford showed that for all g suffi-
ciently large, M, is of general type, which was
a surprise (for low genus, ﬂg has very special
geometry.)

The Harris—Mumford proof relies on the con-
struction of effective divisors associated to curves
that have linear series with special codimension-
1 behavior.

Improvements due to Eisenbud—Harris involve
studying a different class of effective divisors:
the Brill-Noether (BN) and Petri divisors.

BN curves admit linear series (L,V) when the
expected dimension of such series is p = —1.
Petri curves are those for which the cup-product

Vo HY(C,K® L™ Y — HY(C, K)

fails to be injective.



Up to a positive rational multiple, BN has class

)

2

5o — Y i(g —1)é;.
i=1

In particular, the ratio of its lambda-coefficient

to its dp-coefficient equals 6 + g}|_—21.

BN=(g+3>A—g:1

It turns out that for an effective divisor class

Lg/2]
a\ — Z bi5i7
1=0

the single most important invariant (from the
birational p.o.v.) is a/bg, the slope.

Effective divisors of minimal slope s, determine
extremal rays in the effective cone.

Slope conjecture (Harris—Morrison): s; =
6 +;|_—21, and BN are the only effective divisors
on Mg of minimal slope.



The slope conjecture is false. Farkas—Khosla
produced infinitely many counterexamples at-
tached to curves verifying a codimension-1 syzygy
condition.

Khosla showed that when p = 0, one can cal-
culate divisor classes in Pic G2, and push them
down to Pic My via explicit formulas. Here G5,
is the space of linear series on genus-g curves,
which maps finitely onto My, when p = 0.

III. Secant-plane divisors on M,

We consider divisors associated to curves with
codimension-1 secant-plane behavior. Assum-
ingp=0and pu=d—r(s+1—-d+r)= -1, we
compute secant-plane divisor classes in Pic G,
then push forward to Pic My using Khosla's
formulas.



Divisor classes in Pic G7, are determined by
their “values’ on 1-parameter families of curves
with linear series.

Consider a 1l-parameter family of curves = :
X — B with smooth general fiber, and finitely

many irreducible nodal special fibers.

X comes equipped with

e A line bundle £ with degree m on every
fiber

e A rank-(s—+ 1) vector bundle V = L

X /B — PV* is a family of g’.'s.



How many fibers in the family have d-secant
(d — r — 1)-planes? Want answer in terms of
tautological invariants.

One could try computing the locus of points
in X4 for which the evaluation map

Vv & 5d(r)
fibered in
V — HO(L/L(=p1 — -+ — pg))

has rank (d —r).

Difficulties with this approach:

e Not clear that our prescription for d-secant
planes makes sense when p; is a node of a
fiber of X. But Ran = patch by replacing
fiber product with Hilbert scheme.



Ran = pushforward of degeneracy locus of
ev to B is expression in

a = mx(c1(L)), B = me(c1(L) - w), 7y = maw?,
c=c1(V), and g = # of singular fibers in .

e Ran’s approach isn’'t computationally prac-
tical (takes place over d copies of X).

Alternative: use test families to deduce rela-
tions among tautological coefficients.

Test families:

1. Projections of general curve of degree m in
Pst1 from points along disjoint line [: # of
interesting fibers = # of d-secant (d — r)-
planes to the gﬁ{"l that intersect [.



2. Projections of general curve of degree (m-
1) in PsT1 from points along the curve: #
of interesting fibers
= (d+ 1) x (# of (d+ 1)-secant (d — r)-
planes to a gzl"jrll).

3. Fix a K3 surface X C P° with Picard num-
ber 2 that contains a smooth curve C of
degree m and genus g; take a generic pencil
of curves of class [C] on X.

e Knutsen = such K3 surfaces exist, and
r = 1 = none of these surfaces have

d-secant (d — r — 1)-planes.

o If r = s, then none of these surfaces
have d-secant (d—r—1)-planes, by Bézout's
theorem.

Need 2 more relations. Get 1 more because
formula is stable under renormalizing ¢1(£) by



factors from B. Choose the renormalization
that trivializes V:

1(£) = e1(£) - A,

cc(V)Y) _
c1 (V) |—>61(V®O<—S+ 1)) = 0.

Ifr=1orr =s, empirically deduce the missing
apparent relation:

o r—=1:

2(d—1)Po+ (m—3) Py = (6~ 39)(Py + Py,)

® " = S.
2(s —1)Pa+ (2m —3s)Pg =
(6s —3m) Py — (15m — 30s + 12 — 6g) Ps,,.



The case r=1

When r = 1, we can go further, and deter-
mine (conjecturally) generating functions for
the tautological coefficients P.

First determine a generating function for

Ng(m) =# of d-secant (d — 2)-planes to a general curve
of degree m in P%¢—2,

Note that # of interesting fibers in the first
test family = N, (m),

# of interesting fibers in the second family
— Nd—l—l(m —|— 1).

Theorem 2:

. > 2g—2—m g—1
Ngyz" = (14+4z) 2.
dZZ:O dz <(1+4z)1/2+1> (1Ha2) 2




Lehn’'s work = such a formula should exist.

Ingredients of proof. Porteous’ formula, com-
binatorics involving subgraphs of the complete
graph on d labeled vertices, the *‘classical”’ for-
mula for N, recorded in [ACGH].

Now let

> 2g—2—m g—1
Zm = (1442) 72 .
(=) ((1+4z)1/2+1> (1+42) 2

Theorem 2, together with our relations among
tautological coefficients, implies that

ch(da m)zd - - m(Z),

d>0

1 1
P.(d,m)zt = Zn(2) - |= — ]
dzzo 2 21 + 42)1/2
d__ . [ Dz B 4z
Zpﬁ(dym)z —Zm(z) _1—|—4Z (1+4Z)1/2((1+4Z)1/2+1) )

d>0



and conjecturally also
(2(3222 —7(1 4+ 42)3/2 4+ 362+ 7)] nd
| 6(1442)52((1 +42)1/2+1)

(2(3222 — (1 4+ 42)3/2 4+ 122 + 1)]
| 6(1 4 42)52((1+42)Y2+1) |

> P(d,m)z! = Zn(z) -

d>0

> Ps(d,m)z" = Zm(2) -

d>0

Finally, let

2(3222 = 7(1 + 42)32 4+ 362+ 7)
6(1+ 42)52((1 + 42)V/2 + 1)

2(3222 — (1 4+ 42)32 + 1224+ 1)
6(1+42)52((14+42)Y241)

X(z) = , and

Y(z) =

Reduction: ETS X(z) and Y(z) are expo-
nential generating functions for constant terms
of Py(d,m) and Fs,(d,m), respectively, viewed
(for fixed choices of d) as polynomials in m and
(29 — 2).



Y (z) has Taylor series

1
6(322 — 20234 1052% — 5042° 4+ 23102° — 1029627 + ...);

(—1)» 2 (2n—1)!
6 .n!(n—2)!.

X (z) has Taylor series

[2"]Y (2) =

1
6(_322 4 282°% — 1772% 4+ 9602° — 48062° + 229202" — .. .);
< () 1 (@en-1)
n|x — (1)1 gn-1 7,—'1 . "
FIX () = (=1) ( ; 46 n!(n—2)!)

To prove the reduction, ETS X (z) = exponen-
tial generating function for:

S(d) := weighted # of connected (d + 1)-edged subgraphs
of the complete graph on d labeled vertices v1,...,vy4

where edges have multiplicity < 3, and each
graph G is assigned weight

e dHl( indeg(v;) )

o Mjigy -5 My i
A\ .

4

multiplicities of edges incident to and pointing towards v;



Examples of secant-plane divisors

e r = 1,d = 2,s = 3. In this case, Sec C QS’,L comprises 3-
dimensional linear series with double points. We have

21Sec = (=6 +2m)a— 48+ (29 — 2+ 3m — m?)c — v + do.

e r = 1,d = 3,s = 5 (case of 5-dimensional series with
trisecant lines). We have
31Sec = (3m? —27m — 6g + 66)a+ (72 — 12m)5 + (28 — 3m)~y
+ (3m — 20)60 + (24 — m3 4+ 9m? + 6mg — 26m — 249)c.

e r=1,d = 4,s = 7 (case of 7-dimensional series with 4-
secant 2-planes). We have
41Sec = (—1008 + 168g — 24mg — 72m? + 452m + 4m>)a
+ (360m — 1440 + 48g — 24m2)3 + (129 — 720 + 130m — 6m?)~
+ (3729 — 360 4 342m — 119m? — m* 4+ 18m3 — 12¢%2 — 132myg
+ 12m?g)c + (6m? — 98m — 12g + 432)do.

e r =1,d = 5,s = 9 (case of 9-dimensional series with 5-
secant 3-planes). We have
51Sec = (1020mg — 60m2g — 45009 + 60¢2 4 19560 + 5m*
4 1735m? — 150m3 — 9270m)«
+ (240mg — 2400g + 33600 — 40m> — 10160m + 1080m?)43
+ (20000 4+ 60mg — 800g + 370m? — 10m> — 4640m)~
+ (20m3g — 60mg® — 420m?g + 6720 + 48092 4 2980myg
— 5944m + 30m* — 355m> 4+ 2070m? — m® — 7200¢)c
+ (60mg + 640g + 10m3 4 2960m — 290m? — 10720)4p.



IV. Slope asymptotics

If p=0,u= -1, and r =1, then

g=2ad and m=(a+1)(2d—1),a > 2.

Then our virtual slope Z—g satisfies

by 12\ 3 5

bg <6+2ad—|— 1) ~ ad(a+1) o)
6

= +0(g7).

(a4 1)g



