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Duality for Robust Utility Maximization

Utility Maximization with a and Duality

@ Utility Maximization with Claim:

maximize E[U(0 - St + B)], among 6 € Opp.

@ S: locally bounded semimartingale,

e U: R — R: utility function,

@ ®pp: admissible integrands: 6 - S > Jc,
e B e L°: payoff of a claim at maturity.
B

@ Buyer’s problem = utility indifference price of B.
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Duality for Robust Utility Maximization

Utility Maximization with a and Duality

@ Utility Maximization with Claim:

maximize E[U(0 - St + B)], among 6 € Opp.

S: locally bounded semimartingale,

U : R — R: utility function,

®pp: admissible integrands: 6 - S > 3c,
e B e L°: payoff of a claim at maturity.

@ Buyer’s problem = utility indifference price of B.
@ Key Duality: letting V(y) := sup, (U(x) — xy),

aQ aQ
ETU(O - B) = inf inf E|V|A— A—B].
gy e = o V(e

o My ={Q € M : E[V(dQ/dP)] < oo}.
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Duality for Robust Utility Maximization

Many References!!

@ No Claim (B = 0 or constant):

e Kramkov/Schachermayer 99, 03,
e Schachermayer 01,

@ Bounded Claim (B € L*):
o Bellini/Frittelli 02,
e Cvitani¢/Schachermayer/Wang 01,
@ Exponential Utility (U(x) = —e™¥):
e Delbaen/Grandits/Rheinlander/Samperi/Schweizer/Stricker02,
o Kabanov/Stricker 02,
@ Unbounded B:

e Owen/Zictovié 09,
o Biagini/Frittelli/Grasselli 10,
@ Owari 10,
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Duality for Robust Utility Maximization

Question: Utility Maximization with a

@ What if we consider robust utility maximization?

maximize Pin;) EP[U@ - St + B)], among 0 € Opp.
€

@ P: set of probabilities <« P = Model Uncertainty.
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Question: Utility Maximization with a

@ What if we consider robust utility maximization?

maximize Pin;) EP[U@ - St + B)], among 0 € Opp.
€

@ P: set of probabilities <« P = Model Uncertainty.

Can we get a nice “duality”?
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@ What if we consider robust utility maximization?

maximize Pin;) EP[U@ - St + B)], among 0 € Opp.
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@ P: set of probabilities <« P = Model Uncertainty.

Can we get a nice “duality”? How??
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[e]e] Te}

Duality for Robust Utility Maximization

Question: Utility Maximization with a

@ What if we consider robust utility maximization?

maximize Pin;) EP[U@ - St + B)], among 0 € Opp.
€

@ P: set of probabilities <« P = Model Uncertainty.
Can we get a nice “duality”? How??

sup inf EF[U( - St + B)]
0cOpp PepP

299 dQ aQ
= inf inf EP|V([IrA=2 —B
Plre]P)t>0l,r2)eM [ (AdP) +AdP }

@ for a wide class of U and unbounded B.
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Duality for Robust Utility Maximization

A Way: Robust to Family of Subjectives

@ Use minimax theorem:

supigf EP[U® - ST + B)] ~ igfsup EP[U6 - ST + B)]
6 4

i (it v (192) 4199
_|r,;f(/|lr71éE [V(Adp)—i-/\dPB
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Duality for Robust Utility Maximization

A

Way: Robust to Family of Subjectives

@ Use minimax theorem:

supigf EP[U6 - ST + B)) ~ igf sup EP[U(6 - St + B)]
6 4

= |r,;f (/{néE [V (A—dp) + /\—dPB
@ No problem if B = 0 and dom(U) = R..

e Schied/Wu 05, Schied 07.
o Wittmuss 08 (B € L* with singular term).

@ Works also if sup, U(x) < co = OK if U(x) = —e™*.
@ But...
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Duality for Robust Utility Maximization

A

Way: Robust to Family of Subjectives

@ Use minimax theorem:

supigf EP[U6 - ST + B)) ~ igf sup EP[U(6 - St + B)]
6 4

= |r,;f (/{néE [V (A—dp) + /\—dPB
@ No problem if B = 0 and dom(U) = R..

e Schied/Wu 05, Schied 07.
o Wittmuss 08 (B € L* with singular term).

@ Works also if sup, U(x) < co = OK if U(x) = —e™*.
@ But...
@ An alternative way a la Bellini/Frittelli 02.
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Our Idea

of Robust Utility Functional

U: “nice” utility on R (Inada & Reas. Asymp. Elasticity).
@ up g(X) := infeep EF[U(X + B)]: concave.
@ Vvp g(V) 1= SUPx¢ oo (Up,B(X) — (X)), v € ba: conjugate.
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Question
[ Jele}

Our Idea

of Robust Utility Functional

U: “nice” utility on R (Inada & Reas. Asymp. Elasticity).
@ up g(X) := infeep EF[U(X + B)]: concave.
@ Vvp g(V) 1= SUPx¢ oo (Up,B(X) — (X)), v € ba: conjugate.

Under “suitable assumptions on B ”,

@ up g is continuous on L,
9 Yv € ba+,
V|P) + v(B) if v o-additive, V(v|P) < oo

vp g(v) =
P.6(7) otherwise.

o V(|P) := infrep V(v|P) := infpep“EP[V(dv/dP)]”
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Our Idea

Key Lemma

@ My :={Q e M : V(Q|P) < oo}. Assume: MY, # 0.
@ C:={Xel®: X<6- 57,30 € Opp}: conv. cone, D L=,
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Our Idea

Key Lemma

@ My :={Q e M : V(Q|P) < oo}. Assume: MY, # 0.
@ C:={Xel®: X<6- 57,30 € Opp}: conv. cone, D L=,

@ SUPgcp,, Upr.B(0 - ST) “=" sUpxccUp B(X).
@ SUPycc EQ[X] = 0 (resp. = +0o0) iff Q € My (resp. & Moc).
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Question
(o] lo}

Our Idea

Key Lemma

@ My :={Q e M : V(Q|P) < oo}. Assume: MY, # 0.
@ C:={Xel®: X<6- 57,30 € Opp}: conv. cone, D L=,

® SUPjec@,,Ur,B(0 - St) “=" supyec Up,a(X).
@ SUPyec EQ[X] = 0 (resp. = +o0) iff Q € Mo (resp. & Mioc).

1 .
sup Up,a(X) = sup (Up,a(X) — 5¢(X)) = min(vp,g(v) — supv(X))
XeC Xelo® veba XeC

= i v EQ[B)).
bor,rgng( (AQIP) + AE™[B])

—
~

@ Fenchel’s theorem via the continuity of up .
@ Representation of vp g (& “L>° C C” + “RAE” + “M¢, # &").

sup inf EP[U® - St + B)] = LJmin(VAQIP) + AEQ[B)).

0€@pp PeP >0,Qe

Duality for Robust Utility Maximization Keita Owari 8/27



Question
ooe

Our Idea

of Integral Functionals

@ f: QxR — R:convexin x € R,
@ /+(X) := EJ[f(-, X)], X € L*: integral functional.

Rockafellar's Theorem

o sup (v(X) —1¢(X)) = E[f*(-.dv,/dP)] + sup vs(X)

XeLee Xedoml/;
@ If f(-,X) e L' VX € L™, I is continuous on L*, and
E[f*(-, dv/dP if v is o-additive,
sup (v(X) — h(x)) = | E @Rl |
XelLoo 00 otherwise.
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Question
ooe

Our Idea

of Integral Functionals

@ f: QxR — R:convexin x € R,
@ /+(X) := EJ[f(-, X)], X € L*: integral functional.

Rockafellar's Theorem

o sup (v(X) —1¢(X)) = E[f*(-.dv,/dP)] + sup vs(X)

XeLee Xedoml/;
@ If f(-,X) e L' VX € L™, I is continuous on L*, and
E[f*(-, dv/dP if v is o-additive,
sup (v(X) — h(x)) = | E @Rl |
XelLoo 00 otherwise.

@ What if E[f(-, X)] = Ip.f(X) := suppep EF[F(-, X)]?

@ up p(X) = —sup Ip (—X), with f(w, x) = —U(—x + B(w)).
PeP
@ Robust ver. of Rockafellar Th. = Key Lemma = duality.
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Robust Rockafellar Theorem

Robust Version of Rockafellar Theorem

Duality for Robust Utility Maximization Keita Owari 10/27



Robust Rockafellar Theorem
[ le]

Formulation

Normal Convex Integrands and w-wise Conjugate

@ (2, F,P): complete.

Normal Integrands

f:Q2xR— R (notR U {+o00}): normal iff
@ fis jointly measurable;
@ x — f(w, x): LSC, convex, proper.

@ = f*(-,¥) := sup,(xy — f(-, x)) is also normal.
o f(w,y,2) := (zf(»,)*(y) = sup,(xy — Zf(w, X)).

Xy < zf(.x) + f(,y,2), Vx,y € R, ¥z > 0.

° z>0= f(y,2) = zf*(y/2).
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Robust Rockafellar Theorem
oe

Formulation

Assumptions and Elementary Properties

@ P: setof prob’s <« P (= P C L'(P)).

Ip.¢(X) := sup EF[f(-, X)], X € L*®
PeP

. i . 1
Jpi(Y) = int EIFC. Y, dP/dP)], ¥ € L.

(A1) P is convex and o (L', L>°)-compact.
(A2) 3X € L*® s.t. {f(-, X)TdP/dP}pep is uniformly integrable.
(A3) YPeP,3Y e L' st f(-, Y, dP/dP)t e L.

@ Ip¢, J,, 7 are well-defined, Ip ¢ is LSC.

EIXY] < bps(X) + Jp3(Y), ¥X € L™, VY e L.
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Robust Rockafellar Theorem
[ le]

Description of Conjugate

Robust Version of Rockafellar Theorem

@ D:={X e L®: {f(-,X)TdP/dP}pep is Ul} C dom(Ip ).
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Robust Rockafellar Theorem
[ le]

Description of Conjugate

Robust Version of Rockafellar Theorem

@ D:={X e L®: {f(-,X)TdP/dP}pep is Ul} C dom(Ip ).

For any v € ba with Yosida-Hewitt decomp. v = v, + vy,

dUr &3
JIp 7 (ﬁ) +)s;|:g vs(X) < (bp)" (v)

dvr)
<dJd. - =L)+ sup  vs(X)
P,f(d]P’ Xedom(/p.f) ’
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Robust Rockafellar Theorem
[ le]

Description of Conjugate

Robust Version of Rockafellar Theorem

@ D:={X e L®: {f(-,X)TdP/dP}pep is Ul} C dom(Ip ).

For any v € ba with Yosida-Hewitt decomp. v = v, + vy,

dUr &3
JIp 7 (ﬁ) +)s;|:g vs(X) < (bp)" (v)

dvr)
<dJd. - =L)+ sup  vs(X)
P,f(d]P’ Xedom(/p.f) ’

@ If P = {P}, D = dom(lp ) = equality.
@ In general, the inclusion D C dom(/p ¢) can be strict.
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Robust Rockafellar Theorem
o] ]

Description of Conjugate

Ramifications: When “ ”?

@ OKif D = L°°!! But when?
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o] ]

Description of Conjugate

Ramifications: When “ ”?

@ OKif D = L°°!l But when?
@ f: deterministic = f(X) € L*® (recall f is R-valued).
@ Slightly more generally,
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Robust Rockafellar Theorem
o] ]

Description of Conjugate

Ramifications: When “ ”?

@ OKif D = L°°!l But when?
@ f: deterministic = f(X) € L*® (recall f is R-valued).
@ Slightly more generally,

Elementary but Corollary

Suppose 3g € C(R) and W € L° s.t. {WdP/dP}pcp is Ul and
flw,x) < gx) + W(w).

Then D = L°°, hence:
@ Ip s is continuous on all of L*°,

J(dv/dP) if v is o-additive
o sup (v(X) — Ip (X)) = | “P# @/ TE) |
Xeloo +00 otherwise.
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Robust Rockafellar Theorem
[ le]

Robust Utility Functional

Back to the Robust Utility:

@ Let (-, x) := —U(—x + B) = up,(X) = —Ip (—X)

e 1+¢ 1 _
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Robust Rockafellar Theorem
[ le]

Robust Utility Functional

Back to the Robust Utility:

@ Let (-, x) := —U(—x + B) = up,(X) = —Ip (—X)

e 1+¢ 1 _

(B7) 3¢ > 0, {U(—(1 + £)B")dP/dP}pep is Ul. J

= D= L%, ie., {f(-.X)TdP/dP}pep is Ul, YX € L*®.
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Robust Rockafellar Theorem
[ le]

Robust Utility Functional

Back to the Robust Utility:

@ Let (-, x) := —U(—x + B) = up,(X) = —Ip (—X)

e 1+¢ 1 _

(B7) 3¢ > 0, {U(—(1 + £)B")dP/dP}pep is Ul. J

= D = L%, ie, {f(, X)*dP/dP}pep is UI, VX € L.
@ f(y,2)=2zV(y/z) + yB= z(V(y/2) + (y/2)B), z> 0.

(V) = V() + U=(1 + 6)B)
&

1+¢
P

<V +yB=

1
V(y) = - U(=B")
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Robust Rockafellar Theorem
o] ]

Robust Utility Functional

(BY) e > 0, EP[U(=eB*)] > —o0, VP € P. |
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Robust Rockafellar Theorem
o] ]

Robust Utility Functional

(BY) e > 0, EP[U(=eB*)] > —o0, VP € P. |

@ f(-.dv/dP,dP/dP) € L' & V(1|P) < 0

@ V(P|P) = V(1) <00, VP € P = (A3).

VOIP) +v(B) if VO|P) < 0
+00

@ vebal,J,:(dv/dP) =
+ Jpj(dv/dP) otherwise.
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Robust Rockafellar Theorem
o] ]

Robust Utility Functional

(BY) e > 0, EP[U(=eB*)] > —o0, VP € P.

@ f(-.dv/dP,dP/dP) € L' & V(1|P) < 0

@ V(P|P) = V(1) <00, VP € P = (A3).

VOIP) +v(B) if VO|P) < 0
+00

@ vebal,J,:(dv/dP) =
+ Jpj(dv/dP) otherwise.

Important Corollary implies:

Assume (B™), (B™), and P is compact.
@ up g is continuous on all of L.
Q vv >0,
V(v|P) +v(B) ifvis o-additive, V(v|P) < oo

vp g(v) =
P.6() otherwise.
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Duality
©00

Assumptions

@ U e C'(R), strictly concave & increasing with
. ! _ H / —
(Inada) X_Il)rpoo U(x) =400 & X_Ilrroo Ux)=0
! /
(RAE) liminf XYY < 1 & limsup XL X
N\—oo  U(X) x 00 UX)
@ S: d-dim., cadlag P-locally bounded semimartingale.
@ P: convex & weakly compact set of prob’s P <« P.

o M¢, # 0.

< 1.

MV = {Q € Mk)c . V(Q|P) < OO}

e B satisfies (B~) & (B™).
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Duality
oeo

Duality for Utility Maximization with a Claim

Duality Theorem

sup inf EP[U(O - ST+B)]_ min  (V(AQ|P) + AEQ[B)).
6e@,, PEP >0,QeMy

@ Recall: V(v|P) = infpep V(v|P).
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Duality for Utility Maximization with a Claim

Duality Theorem

sup inf EP[U(O - ST+B)]_ min  (V(AQ|P) + AEQ[B)).
6e@,, PEP >0,QeMy

@ Recall: V(v|P) = infpep V(v|P).
@ The “min” is attained by EI(;\, @), but Q + P, in general.
@ Duality is stable under change of ®:

Ov:={0cL(S): 6=0,0-Sis Q-superMG, VQ € My}

Duality remains true for @pp C VO C Oy. J
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Duality
oeo

Duality for Utility Maximization with a Claim

Duality Theorem

sup inf EP[U(O - ST+B)]— min  (V(AQ|P) + AEQ[B)).
6e@,, PEP >0,QeMy

@ Recall: V(v|P) = infpep V(v|P).
@ The “min” is attained by EI(;\, @), but Q + P, in general.
@ Duality is stable under change of ®:

Ov:={0cL(S): 6=0,0-Sis Q-superMG, VQ € My}

Duality remains true for @pp C VO C Oy. J

@ Robust version of utility indifference valuation.
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Duality
ooe

Application: Robust Utility Indifference Prices

Comparing the maximal robust utility
® SUPgep,, Up,8(—p + 6 - ST): buy the claim B at the price p.
@ SUPgep,, Up,0(0 - St): not buy.
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Duality
ooe

Application: Robust Utility Indifference Prices

Comparing the maximal robust utility
® SUPgep,, Up,8(—p + 6 - ST): buy the claim B at the price p.
@ SUPgep,, Up,0(0 - St): not buy.
@ Indifference Price p(B): maximal acceptable price:
p(B) = sup{p: sup ups(—p+0-Sr) = sup upo(0-Sr)}

0€Bpp 0€®pp
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Duality
ooe

Application: Robust Utility Indifference Prices

Comparing the maximal robust utility
® SUPgep,, Up,8(—p + 6 - ST): buy the claim B at the price p.
@ SUPgep,, Up,0(0 - St): not buy.
@ Indifference Price p(B): maximal acceptable price:

p(B) = supip: sup Ups(—p+6-51) = sup upo(8-Sr)}

0€Bpp 0€®pp

p(B) = ng@(EQ[B] +7(Q)),

7(@) = int (V(AQlP) it ve'e |7D)) .

Duality for Robust Utility Maximization Keita Owari 20/27



Proof of Abstract Result

Proof of Abstract Theorem

Qutline
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Proof of Abstract Result
@0000

Second Inequality (Easy Part)

dv
SUp (100 ~ (X)) = g (G )+ sup ue00).
XelLo® P\ dP Xedom(/p.r)
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Proof of Abstract Result
@0000

Second Inequality (Easy Part)

dv
SUp (100 ~ (X)) = g (G )+ sup ue00).
XelLo® P\ dP Xedom(/p.r)

@ Recall E[XY] < Ip (X) + Jp (V).
@ Note: v(X) — kp £(X) = E[X(dv,/dP)] — Ip.«(X) + vs(X),
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Proof of Abstract Result
@0000

Second Inequality (Easy Part)

dv
SUp (100 ~ (X)) = g (G )+ sup ue00).
XelLo® P\ dP Xedom(/p.r)

@ Recall E[XY] < Ip (X) + Jp (V).
@ Note: v(X) — kp £(X) = E[X(dv,/dP)] — Ip.«(X) + vs(X),

sup (v(X) —lp (X)) = sup  (v(X) — Ip (X))
Xeloo Xedom(lp.f)

dVr
< sup (J ~(—) +v (X))
Xedom(lp ) \ T\ dP °

dv,)
=J ~(— +  sup vs(X).
PINAP ) " xedom(ip )
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Proof of Abstract Result
0e000

First Inequality 1: Lower Bound via

sup (v(X) — Ip,1(X)) = Jp, 3(dvr/dP) + sup vs(X)
Xel>® XeD

@ D=1{Xel®: {f(-,X)TdP/dP}pep is UI} # & (by (B2).
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Proof of Abstract Result
0e000

First Inequality 1: Lower Bound via

sup (v(X) — Ip,1(X)) = Jp, 3(dvr/dP) + sup vs(X)
Xel>® XeD

={X € L®: {f(-.X)TdP/dP}pcp is Ul} # @ (by (B2).
sup (v(X) — Ips(X)) = sup |nf (v(X) EP[f(-.X)]) (definition)
Xeloe Xeloo P

= sup inf (v(X) — EPIFC. X))
XeD P

minimax

. P
Plg}‘))s(telg(v(x) — ETf(, X))

= inf sup{(vr()o EPIFC XD +vs(0) (v = vy +vg)
PeP xep
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Proof of Abstract Result
0e000

First Inequality 1: Lower Bound via

sup (v(X) — Ip,1(X)) = Jp, 3(dvr/dP) + sup vs(X)
Xel>® XeD

={X € L®: {f(-.X)TdP/dP}pcp is Ul} # @ (by (B2).
sup (v(X) — Ips(X)) = sup |nf (v(X) EP[f(-.X)]) (definition)
Xeloe Xeloo P

= sup inf (v(X) — EPIFC. X))
XeD P

minimax

. P
Plg}‘))s(telg(v(x) — ETf(, X))

= inf sup{(vr()o EPIFC XD +vs(0) (v = vy +vg)
PeP xep

> J73 ;(dvr/d]P’) + sup vg(X).
’ XeD
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Proof of Abstract Result
[e]e] Tele]

@ [t suffices to show:

Ya < pr;(dvr/dP) and Vf < supyep vs(X),

sup(v(X) — EP[f(, X)) >a+ B, VPeP.
XeD

Duality for Robust Utility Maximization Keita Owari 24/27



Proof of Abstract Result
[e]e] Tele]

@ [t suffices to show:

Ya < pr;(dvr/dP) and Vf < supyep vs(X),

sup(v(X) — EP[f(, X)) >a+ B, VPeP.
XeD

@ Fix Xs € D with vg(X) > B.
@ By singularity, 3(Ap) C F s.t. P(Ap) 1 & vs(Ap) = 0.
@ Consequence: VX € L, vs(14,X + 14 Xs) = vs(Xs) > B.
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Proof of Abstract Result
[e]e] Tele]

@ [t suffices to show:

Ya < pr;(dvr/dP) and Vf < supyep vs(X),

sup(v(X) — EP[f(, X)) >a+ B, VPeP.
XeD

@ Fix Xs € D with vg(X) > B.

@ By singularity, 3(A,) C F s.t. P(Ap) /' 1 & vs(Ap) = 0.

@ Consequence: VX € L, vs(14,X + 14 Xs) = vs(Xs) > B.
@ Find XJ € D of the form “XJ = 14, X% + 1,2 Xs" s..

lim(E[Xdv,/dP] - EP[f(, XP)] > e
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Proof of Abstract Result
[e]e]e] o]

Proof of Claim 1: Measurable Selection

° Bya < inf E[f(-,dv,/dP, dP/dP)], 3Zp € L' s.t.
€

< dve dPY dv,
E[Zp] > «, ZP<f(.’W’ﬁ) —igg( dP _ dP ( ))
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Proof of Abstract Result
[e]e]e] o]

Proof of Claim 1: Measurable Selection

° Bya < inf E[f(-,dv,/dP, dP/dP)], 3Zp € L' s.t.
€

L dv, dPY _ dv, dP
E[ZP]>O[, ZP<f(,W’ﬁ)_§2£(XW ﬁf(,X))

@ A measurable selection theorem shows: 3X3 € L0 s.t.

Zo < X° dv, dP

—_— e — . 0

® « < E[Zp] < “E[X8dv,/dP] — EP[f(-, XD)]".
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Proof of Abstract Result
[e]e]e] o]

Proof of Claim 1: Measurable Selection

° Bya < inf E[f(-,dv,/dP, dP/dP)], 3Zp € L' s.t.
€

L dv, dPY _ dv, dP
E[ZP]>O[, ZP<f(,W’ﬁ)_§2£(XW ﬁf(,X))

@ A measurable selection theorem shows: 3X3 € L0 s.t.

Zo < X° dv, dP

—_— e — . 0

® « < E[Zp] < “E[X8dv,/dP] — EP[f(-, XD)]".
@ But X8 ¢ D (¢ L*).
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Proof of Abstract Result
[e]e]e]e] ]

Proof of Claim 2: Final Step

@ Recall: f is finite-valued, XB is P-a.s. finite.
@ By:= {|X/9| <nyn {lf(,X8)| <nj,and Cp:= Ap N B
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Proof of Claim 2: Final Step

@ Recall: f is finite-valued, XB is P-a.s. finite.
@ By:= {|X/9| <nyn {lf(,X8)| <nj,and Cp:= Ap N B
@ P(Cn) /" 1&vs(Cp) = 0= vs(XD) = vs(Xs) > B.
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Proof of Abstract Result
[e]e]e]e] ]

Proof of Claim 2: Final Step

@ Recall: f is finite-valued, XB is P-a.s. finite.

@ By:= {|X/9| <nyn {lf(,X8)| <nj,and Cp:= Ap N B
@ P(Cp) /1 & vs(Cp) = 0 = vs(Xp) = vs(Xs) > B.

o XIQ = 1CnX,9 + 1C,°,XS eD

E[Xpdv,/dP] — EP[f(-, X)] = E[Zp] + E[1¢¢Ep]

o Ep = Xsdv,/dP — f(-, Xs)dP/dP — Zp € L' = E[1¢Ep] — O.
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Proof of Abstract Result
[e]e]e]e] ]

Proof of Claim 2: Final Step

@ Recall: f is finite-valued, XB is P-a.s. finite.

@ By:= {|X/9| <nyn {lf(,X8)| <nj,and Cp:= Ap N B
@ P(Cp) /1 & vs(Cp) = 0 = vs(Xp) = vs(Xs) > B.

o XIQ = 1CnX,9 + 1C,°,XS eD

E[XEdv,/dP] — EP[f(-. XP)] = E[Zp] + E[1¢5Ep]
o Ep = Xsdv,/dP—f(-. Xs)dP/dP — Zp € L' = E[1c:Ep] — 0.
e E[Zp] > «a, hence
sup(v(X) — EP[f(-, X)] = E[Zp] + vs(Xs) > o + .
XeD

QED !l
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Thank You for Your Attention !!

keita.owari@ gmail.com
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