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THE BASIC THEORY



Structures

Vocabulary:

Relation and function symbols Ry,..., R, and f1,...,f,
each with an associated arity (unary, binary, ternary, ...).

Structure:

M= (MRM .. RM M M)

s

Terminology:

1. M is the universe of M,
2. R,M and f,-M are the interpretations of R; and f;,



Examples

Undirected loopless graphs G = (V, E):

1. Vs a set,
2. ECV?isa binary relation,

3. edge relation is symmetric and irreflexive.

Ordered rings and fields F = (F, <,+,-,0,1):

. F is a set,

. <CF%isa binary relation,

1
2
3. +:F? = Fand - : F? — F are binary operations,
4. 0 € F and 1 € F are constants (0-ary operations),
5

. axioms of ordered ring (or field) are satisfied.



Proviso

Finite relational vocabularies and structures:

1. vocabulary is relational if it contains no function symbols,

2. structure is finite if M is finite.

Provisos:

From now on, all our structures will be finite,
over finite relational vocabularies.

Killed functions?:

Functions are represented as relations, by their graphs.



First-order logic: syntax

First-order variables:

X1, X2, ... intended to range over the points of the universe.
Formulas:
e x; = x;, and Ri(xi,...,x;) are formulas,
o xi # xj, and = Ri(x;, ..., Xx; ) are formulas,

e if ¢ and v are formulas, so is (¢ A V),
e if ¢ and v are formulas, so is (¢ V 9),
e if ¢ and v are formulas, so is (¢ — ),
e if ¢ is a formula, so is (Ix;)(p),
)

e if ¢ is a formula, so is (Vx;)(p).



First-order logic: semantics

Truth in a structure:

Let ¢(x) be a formula with free variables x = (x1,...,x,).
Let M be a structure, and let a = (a1,...,a,) € M".
M = ¢(x/a)
Example:

p(x) = (Vy)(B2)(E(x, 2) A E(y, 2))-

G = ¢(x/a)



Second-order logic: syntax

Second-order variables:

X1, Xo, ... intended to range over the relations on the universe.
Formulas:

e add Xj(xj,...,x; ) to the atomic formulas,

e add = Xi(xj,...,x;) to the negated atomic formulas,

e if  is a formula, so is (3X;)(y),
e if  is a formula, so is (VX/)(¢).



Second-order logic: semantics

Truth in a structure:

Let (X, x) be a formula with free variables X and x.

M = ¢(X/A,x/a)



Definability and uniform definability

Definability:

Let ¢(X,x) be a first-order formula with free variables X and x.
Let M be a structure and let C be a class of structures.

The relation defined by ¢ on M is:
oM ={(A,a) : M = ¢(X/A x/a)}.
The query defined by ¢ on C is:
o€ = {o" A e}
Note:

When ¢ is a sentence: ¢” is identified with true or false.
and therefore, ¢C is identified with a subset of C.



Examples

Given a graph, what are the vertices of degree one?:

¢(x) = (Fy)(Exy A (Vz)(Exz — z = y)).

Given a graph, is it connected?:

o = (Vx, y)(VX)(Xx A (Vu, v)(Euv A Xu — Xv) — Xy).

Given a graph, what are its independent sets?:

P(X) = (Vx,y)(Xx A Xy — =Exy)



Quantifier rank

Quantifier rank:

qr(¢) = 0 if ¢ is atomic or negated atomic,

¢) = max{qr(¢),qr(0)} if o = (Y VO) or p = (p N 6),
¢) =1+ ar(y) if ¢ = (Ix)(¥) or ¢ = (Vxi)(¥),
qar(¢) =1+ ar(y) if ¢ = (3X;)(¢) or ¢ = (VXi)(¥),

1

2.r
3. qr
4

/\/\/\/\



Finitely many formulas up to equivalence

Fixed rank formulas:

FO} and SO%: the set of all FO or SO-formulas with
quantifier rank at most n and at most k free variables.

Key property of quantifier rank:

For every n€ N and k € N:
FOY is finite up to logical equivalence,
SOy, is finite up to logical equivalence.

Induction on n. Bound of the type 22"



Types

Types:

Let A be a structure, and let a = (a1,...,a,) € A"
Let L be a fragment of first-order logic.

L tp(A,a) = {p(x) € L: A= p(x/a)}
2. tp (A)={peL: A=y}

Notation:

1. Aja <!l B,b stands for tp,(A,a) C tp,(B,b
2. A,a =t B,b stands for tp,(A,a) = tp,(B,b)

~—



Meaning of Types

What does A,a </ B,b mean?

e when L = {all atomic formulas}, it means

the mapping (aj — bj : i =1,...,r) is a homomorphism
between the substructures induced by a and b

e when L = {all atomic and negated atomic formulas}, it means

the mapping (aj — bj : i =1,...,r) is an isomorphism
between the substructures induced by a and b



Meaning of Types

What does A,a </ B,b mean?

e when L = {all formulas with at most one quantifier}, it means

the substructures induced by a and b are isomorphic and
have the same types of extensions by one point

e when L = {all formulas with at most two quantifiers}, it means

the substructures induced by ...



Ehrenfeucht-Fraissé Games

Two players: Spoiler and Duplicator

Two structures: A and B

Unlimited pebbles: p;, py,... and g1, 92, ...
An initial position: a€ A" and b € B'
Rounds:

Referee: Spoiler wins if at any round the mapping p; — g; is not
a partial isomorphism. Otherwise, Duplicator wins.
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Back-and-Forth Systems

Formal definition of winning strategy:
An n-round winning strategy for the Duplicator on A,a and B, b is
a sequence of non-empty sets of partial isomorphisms (F; : i < n)
such that (a — b) € Fy and
1. Forth: For every i < n—1, every f € F;, and every a € A,
there exists g € Fj11 with a € Dom(g) and f C g.
2. Back: Forevery i < n—1, every f € F;, and every b € B,
there exists g € F; 11 with b € Ran(g) and f C g.

A,a =FF" B, b: there is an n-round winning strategy.



Indistinguishability vs Games

Ehrenfeucht-Fraissé Theorem:

A,a="""B,bif and only if A,a =F"" B,b
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Indistinguishability vs Games

Ehrenfeucht-Fraissé Theorem:

A,a="""B,bif and only if A,a =F"" B,b
<=: Duplicator’s strategy makes the structures indistinguishable.

= Use the finiteness of FO} to note that:

For every A,a and every n € N,
there exists an FO-formula ¢} ,(x) such that:

B = ¢a.a(x/b) if and only if A a =FO" B, b.
Then the strategy for the Duplicator is built inductively on n:

1. use witness to B |= ¢, ,(x/b) to duplicate first move in A.
2. use witness to A |= ¢g ,(x/a) to duplicate first move in B.



Using games to prove undefinability results

Example:

Let Q@ = “Given a graph, does it have an even number of vertices?”
How would you show that it is not FO°-definable?



Using games to prove undefinability results

Example:

Let Q@ = “Given a graph, does it have an even number of vertices?”
How would you show that it is not FO°-definable?

Play on a 5-clique and a 6-clique.



Using games to prove undefinability results

General method:
Let Q be a Boolean query on C. Let n € N be a quantifier rank.
Are there A and B in C such that:

Q(A) # Q(B) and A=FO"B ?

Fact:

YES = Q@ is not FO"-definable on C.
NO = Q@ is FO"-definable on C.

If they do not exist, then Q = \/acq PA
which is a finite disjunction (up to equivalence).



Wrap-up about types and games

Good characterization:

Games and definability are somehow dual to each other.

Generality and flexibility:

1. SO-moves: Spoiler and Duplicator choose relations.
2. existential fragments: Spoiler plays only on the left.

3. positive fragments: Referee checks for homomorphisms.

Other parameters:

1. arity: in monadic SO (MSO), all SO-moves are sets.

2. width: maximum number of free variables of the subformulas.



Locality of first-order logic

Gaifman (or primal) graph:
For a structure A, let G(A) be the undirected graph where:

e vertices: the universe of A,

e edges: pairs of points that appear together in some tuple of A.
Neighborhoods:
For a structure A, a point a € A, and radius r € N, define:
Na) = {a € A:dgay(a, @) < r}.
Note:

“x € Ni(y)" and “d(x,y) > 2r" are FO-definable.



Gaifman Theorem

Local formulas:

Formulas with all quantifiers of the form:

(3y € N,(x;)) and (Vy € N,(x;)).

Basic local sentences:

(Ix1)--- (Elxk)(/\ d(xi,x;) > 2r AXS(x;)).
i#

Gaifman Locality Theorem:

Every first-order sentence is logically equivalent to a Boolean
combination of basic local sentences.



Example application of Gaifman locality

Graph connectivity is not in existential MSO:

Suppose it is via (IX1,. .., Xs)(¥).
Let r be a bound on the locality radius of FO part 1.
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Example application of Gaifman locality

Graph connectivity is not in existential MSO:

Suppose it is via (IX1,. .., Xs)(¥).
Let r be a bound on the locality radius of FO part 1.

STEP 1: Color a very big cicle with the existential SO-quantifiers:

STEP 2: Split two most-popular 4r-neighborhoods.
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Part Il

RANDOM STRUCTURES



Erdos-Renyi random graphs

The G(n, p) model:

Graph G = (V,E) with V = {1,...,n} generated as follows:

Put {u,v} in E with probability p,
independently for each u,v € V with u # v.

Typical values of p:

p = 1/2 [uniform distribution],

p = c¢/n for ¢ > 0 [appearence of giant component],

p =In(n)/n+ c/n for ¢ > 0, [connectivity]

p = nP/9 for p,q € N [appearance of small subgraphs].



Some typical random graph statements

At p=1/2:

Almost all graphs are connected
Almost all graphs are Hamiltonian
Almost all graphs are k-extendible
Almost all graphs are 2 log(n)-Ramsey



0-1 law for first-order logic

0-1 law for first-order logic

Let ¢ be a first-order sentence in the language of graphs.
If G ~ G(n,1/2), then as n — oo

either almost all graphs satisfy ¢
or almost all graphs satisfy —¢.

In other words:

either lim,_o Pr[G = ¢] =0
or limp—o Pr[G = ¢] = 1.



How is this done?

Three known proofs:

1. Compactness argument through the Rado graph
2. Enhrenfeucht-Fraissé game

3. Quantifier elimination



Quantifier elimination proof

Goal:
Show that for every first-order formula ¢(x, ..., xk)
and almost every graph G the following holds:
There exists F : TYPES? — {0,1} such that
for every @ € V¥ it holds that
G = ¢lu] <= F(tp}(G, 1)) = L.
Note:

If ¢ is a sentence (k = 0), then F € {0,1}, and
either almost every G satisfies ¢
or almost every G satisfies —¢.



Quantifier elimination proof (cntd)

Goal by induction on number of quantifiers in prenex ¢:

1. If ¢ is quantifier-free, clear.

2. If p = (HXk)(l/)(Xl, . ,Xk_]_,Xk)), let Fw be given by I.H.
Fo(t) = 1 if there exists t/ D t such that Fy(t') =1,

YT 0 if for every t' D t we have Fy(t') = 0.

Key property of almost every graph (k-extendibility):

For every U € VK and every t' € TYPES?(H:

If ¢ 2D tpd(G,u) and t' is realizable,
then there is v € V with t/ = tp?((G,H, v).



Ramifications and extensions

Other measures:

1. p=n"%for 0 < a < 1: zero-one law holds iff « is irrational,

2. p=c/nfor ¢ > 0: convergence law to ce™ ¢, 1/c + e, etc.

Other classes of structures:

1. directed graphs, relational structures, unary functions,

2. K-free graphs, etc.

Other logics:

1. Fixed-point logics, infinitary logics with finitely many variables,
2. Fragments of existential second-order logic (e.g. SNP), etc.

3. First-order logic with the parity quantifier.



FO with parity quantifier

Parity quantifier:

(®u)(é(u)) : the number of u for which ¢(u) holds is odd.

Note:

(@ u,v)((u, v)) = (Bu)(@Vv)(d(u, v))

Example:

(& u,v,w)(Euv A Evw A Ewu)



Why-on-earth?

Why-on-earth?

How well can FO and FO[®] formulas be a approximated
by low-degree polynomials over GF(2)?

(@ a, b,c)(Eab A Ebc A Eca)

VS.

Z Z Z XabXpcXca Mod 2

acV beV ceV



Why-on-earth? (contd)

Previously known result:

Razborov-Smolensky Theorem:

For every F = F,: {0,1}(3) — {0,1} in FO[&] (indeed AC°[&]),
there exists a multivariate polynomial P over GF(2) such that:

1. deg(P) = log(n)®®,

2. Pre~g(n1/2[F(6) = P(G)] 2 1 — 27 e,



Why-on-earth? (cntd)

Recent result:

Kolaitis-Kopparty Theorem:

For every F = F, : {0, 1}(2) — {0,1} in FO[@] (but not AC°[@]),
there exists a multivariate polynomial P over GF(2) such that:

1. deg(P) =©(1),

2. Prag(n/2)[F(G) = P(G)] > 1 — 279",

Moral:

Exploit the uniformity of FO[®]
and its structure as a logic
to get stronger parameters.



Modular convergence law

Two ways the 0-1 law for FO[®)] fails on G(n,1/2):

1. (®u)(u = u) does not converge (it alternates),
2. (®uy,...,ux)(H(u1, ..., ux)) converges to 1/2 (if H rigid).

Indeed, (if H and H’ are rigid)

3. (@ 1)(H(@)) A (@ V)(H'(V)) converges to 1/4.



Modular convergence law (cntd)

Modular Convergence Law Theorem:

Let ¢ be an FO[®] sentence in the language of graphs.
If G~ G(2n,1/2) and H ~ G(2n+ 1,1/2), then there exist
constants ag, a; € [0,1] such that

limp_00 Pr[G E ¢] = a0
limp—oo Pr[H £ ¢] = a1.



How is this done?

Quantifier elimination:

Show that for every first-order formula ¢(x, ..., xk)
and almost every graph G the following holds:

There exists F : TYPES? x {0,1}CONNk — {0,1} such that
for every @ € V¥ it holds that

G = ola) <= F(tp3(G. 1), freqf(G, 7)) = 1.

Estimation of subgraph frequencies mod 2:

Distribution of freq§(G) is 2~ ") -close to uniform.

Proof uses tools from discrete analysis:
Gowers norms over finite fields.



More Why-on-earth?

Ambitious:

Extension to a logic that can check independent sets of log size?
Related to getting polynomial-time constructible Ramsey-graphs.
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Part [l

ALGORITHMIC META-THEOREMS



Decision problems

Setup:

A class of structures C.
A class of formulas ¢.

Model Checking Problem:
Given ¢ in ® and A in C, does A |= ¢?
Note:

For ® = FO and C = STRg,(E),
the problem is solvable in time |A[O(¢).



Running examples

Dominating set of size at most k:

(3va) -+ Bvk)(Yu)(Euvy V - - - V Euvy)

Feedback vertex-set of size at most k:

(3v1) - - - (3vk)(connected (v, . .., vk) A acyclic(va, . .., vk))

where:

1. connected(vy,...,vk) = (Vx,¥)(\jx #ViAN N,y #Vvi— -
2. acyclic(vi,...,vk) = --- exercise.



Treewidth graphically




Treewidth graphically




Treewidth graphically



Tree-like graphs

Tree-decompositions:

A tree-decomposition of a graph G = (V, E) is a tree T such that:

1. every node of T is labeled by a subset of V' (the bags),
2. every edge in E is contained in some bag,

3. for every v € V, the set of nodes of T whose bags contain v
induces a connected substree of T.

Definition of treewidth:

e the width of T is the size of the largest bag (—1),
e tw(G) = min{k : G has a tree-decomposition of width k}.
o tw(A) = tw(G(A)).



Courcelle Theorem

Courcelle Theorem:

If every structure in C has tree-width less than k,
then there exists an algorithm that:

given a structure A € C and a sentence ¢ € MSO,
determines whether A = ¢ in time

where f is a computable function.



How is this done?

Given:
Let ¢ be an MSO-sentence of quantifier rank q.
Let A be a structure of treewidth less than k.
Subgoal:
Build B such that B =J o, A and |B| < f(|¢], k).
Slogan:

B is a miniaturized version of A.



How is this done? (cntd)

Algorithm:

1. Compute a tree-decomposition of A of width less than k,
2. Use it to build B ={ ;¢ A with |B| < (|9, k),
3. Evaluate B = ¢ in time independent of |A|.

Note:

Computing a tree-decomposition of width less than k
is solvable in time 2PO(K) . |A|.



Construction of miniaturized version

Brute force construction of all miniatures:

1. let o be the vocabulary of ¢;
2. put all o-structures with universe in {1,... k} in &;
3. For every A, a of the form:

V1177777777,
RN/ 7777777 7477227277777,

IS IIIIIIIIIS
i/

A, a

where Ag,A; € £ and a € A has AgN A; C a,
if A a 5_'51‘\’/[80 B, b for every B, b with B € £ and b € B,
add A to &;

4. repeat until £ is unchanged.



Construction of miniaturized version (cntd)

Key property 1:

Iteration stops after < f(|¢|, k) iterations:
a new Ef\’/{SO—k—type is added at each iteration.

Key property 2:

If tw(A) < k, its =] go-k-type is represented in &:
A is built from size k structures through k-bounded unions.



Example application of Courcelle Theorem

Feedback vertex-set of size at most k:

For every fixed w > 1 and k > 1, there exists a linear-time
algorithm to decide FVS(G) < k on graphs G with tw(G) < w.

But wait a second:

If indeed FVS(G) < k, then tw(G) < k + 1.

Linear time algorithm working on all graphs:
1. check if twG < k + 1 in time 2P°W(K) |G|,
2. if not, stop and return “NQO";
3. if yes, run Courcelle Theorem in time f(|¢k|, k + 1) - |G].



Optimization problems

Setup:

A class of structures C.
A class of formulas ® with a free set-variable.

Minimization Problem:

Given ¢(X) in ® and Ain C,
find X C A of minimum size
such that A | ¢(X), if it exists.

Note:

For ® = FO and C = STRg,(E),
the problem is solvable in 2/Al . |A|l¢],



Running examples

Minimum Dominating Set:

#(X) = (Vu)(3v)(Euv A Xv).

Maximum Independent Set:

d(X) = (Yu, v)(Xu A Xv — =Euv).



Extended Courcelle Theorem

Extended Courcelle Theorem:

If every structure in C has tree-width less than k,
then there exists an algorithm that:

given a structure A € C and a formula ¢(X) € MSO,
finds the optimum to optx¢(X) in time

where f is a computable function.



Larger classes of structures?

NP-hard for planar graphs:

Computing the maximum independent set
stays NP-hard on planar graphs.

Let’s be satisfied with approximations...



Approximation algorithms

Dawar-Grohe-Kreutzer-Schweikardt Theorem:

If every graph in C excludes Kj as a minor,
then there exists an algorithm that:

given a ¢(X) € FO that is monotone in X and a graph G in C,
finds X C V with cardinality within (1 £ €)-factor from optx¢(X)
in time

F(|9], k1) - |GIE1D,

where f and g are computable functions.



How is this done?

Given:
Let ¢(X) be a FO-formula that is positive in X.
Let G be a graph in the class C; let us say a planar graph.
Fact:

On planar graphs, r-neighborhoods have treewidth < 3r.
On planar graphs, d-rings have treewidth < 3d.



How is this done? (cntd)

Hint of algorithm:

Write ¢(X) in Gaifman local form which is positive in X (Thm!).
Simplifying a lot, the problem reduces to solving:

VS"(ag, X) A --- AYST(ag, X)

for every possible ai, ..., as (not necessarily far from each other).
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Hint of algorithm:

Write ¢(X) in Gaifman local form which is positive in X (Thm!).
Simplifying a lot, the problem reduces to solving:

VS"(ag, X) A --- AYST(ag, X)

for every possible ai, ..., as (not necessarily far from each other).

:
g -
N
o © o
! ’ \ \
e O 1 i
1 !



More details

split G into rings of width d = ©(£ + r), centered at vy (say),
use treewidth of rings to solve minx ¥="(at, X) on each ring,
use monotonicity of ¥<"(a;, X) to get feasible solutions,
use k = O(£) shifted quasi-partitions to get Xi, ..., Xk,

SAREE T A

return the smallest Xj.



Analysis

‘)Q|<< j£:|)<‘<< 2{:2{:|)QA < - }E:j£:|Rbr1)Gnm‘

i=1 j>0 i=1 j>0

and since each vertex appears in at most d rings Rj;:

< '|)Gmn|§;(1—F6N)Gan

1
k'
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APPROPRIATE CREDIT

PART I. THE BASIC THEORY

Fraissé invented back-and-forth systems (1950).

Ehrenfeucht invented the games (1961).

Gaifman locality theorem: Gaifman (1982).

Connectivity not in existential MSO: originally Fagin (1975).

Proof here: follows Fagin, Stockmeyer and Vardi (1995).



APPROPRIATE CREDIT (CNTD)

PART Il. RANDOM STRUCTURES

e 0-1 law for FO at p = 1/2: independently Glebskii, Kogan,
Liogonki and Talanov (1969) and Fagin (1976).

e 0-1 law for FO at p = n™®: Shelah and Spencer (1988).
e convergence law for FO at p = ¢/n: Lynch (1992).

e 0-1 law for stronger logics at p = 1/2: Blass, Gurevich,
Kozen, Kolaitis, Vardi (1980's).

e Razborov-Smolensky Theorem: Razborov and Smolensky
(1987).

e modular convergence law for FO[®]: Kolaitis and Kopparty
(2010).



APPROPRIATE CREDIT

PART Ill. ALGORITHMIC META-THEOREMS

Notion of treewidth: several groups, notably Robertson and
Seymour (1980's).

Courcelle Theorem: Courcelle (1990).

Application to feedback vertex-set: folklore (Flum and Grohe
book).

Dawar et al. Theorem: Dawar, Grohe, Kreutzer and
Schweikardt (2006), building on Baker (1994) and Grohe
(2003).
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