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Let S ⊂ Rn be a set definable in an o-minimal structure over R.

Construction which produces a homotopy equivalent compact
definable set T (S) via certain approximation scheme.
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Example

S :=
⋃

j
⋂

i{x ∈ Rn| fij(x) = 0, gij(x) > 0} where fij ,gij are

continuous definable functions

Sδ :=
⋃

j
⋂

i{fij(x) = 0, gij(x) ≥ δ}
Sε,δ :=

⋃
j
⋂

i{|fij(x)| ≤ ε, gij(x) ≥ δ}
0 < ε� δ � 1

δ
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S

S
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For 0 < ε0 � δ0 � · · · � εm � δm define

Tm(S) := Sε0,δ0 ∪ · · · ∪ Sεm,δm

Theorem (A. Gabrielov, NV)

Tm(S) is m-equivalent to S.
If m ≥ dim S then Tm(S) is homotopy equivalent to S

i.e., there is a map ϕ : Tm(S)→ S such that the induced
ϕ#j : πj(Tm(S))→ πj(S) is an isomorphism for 1 ≤ j ≤ m − 1
and an epimorphism for j = m. Same for homology.
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S = {|x| < 1, |y| < 1} ∩
({x > 0, y > 0} ∪ . . . ∪ {x > 0, y = 0} ∪ . . . ∪ {x= y = 0})
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Approximation T0 = Sδ0,ǫ0
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Approximation T1 = Sδ0,ǫ0 ∪ Sδ1,ǫ1
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Approximation T2 = Sδ0,ǫ0 ∪ Sδ1,ǫ1 ∪ Sδ2,ǫ2
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To apply in more general situations (e.g., projections of sets
defined by equations and inequalities) – axiomatic definition of
approximation scheme.

Let S ⊂ Rn be a union of an o-minimal monotone family of
compact sets Sδ, δ > 0 such that Sδ ⊂ Sδ′ for δ > δ′.
Let each Sδ be an intersection of compact sets Sε,δ, ε > 0,
where Sε′,δ ⊂ Sε,δ for ε > ε′, and Sδ ⊂ U ⊂ Sε,δ′ for δ > δ′, for
some open U ⊂ Rn.

We say that S is represented by the families Sδ, Sε,δ.

Consistent with Example above.

Another examples:
Let ρ : Rn+r → Rn be the projection on a subspace.
Then ρ(S) is represented by ρ(Sδ), ρ(Sε,δ).
If S is Rn \ S, then ρ(S) is represented by ρ(Sδ), ρ(Sε,δ).
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Assume that S is connected.
Whenever m > 0 there is a natural bijection between connected
components of S and Tm(S) = Sε0,δ0 ∪ · · · ∪ Sεm,δm .

Theorem (A. Gabrielov, NV)
For every 1 ≤ j ≤ m, there are epimorphisms

ψj : πj(Tm(S))→ πj(S),

ϕj : Hj(Tm(S))→ Hj(S),

in particular, rank Hj(S) ≤ rank Hj(Tm(S)).

Conjecture
ψj and ϕj are isomorphisms for j ≤ m − 1.
If m ≥ dim S then Tm(S) and S are homotopy equivalent.

Conjecture proved when the family Sδ is separable.
Case of equations and inequalities is separable, case of their
projections – not necessarily.
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Application: asymptotically tight (or close to tight) upper
bounds on Betti numbers.

For semialgebraic and basic algebraic sets – a classical
problem: Petrovskii, Oleinik, Milnor, Thom.
(Note: triangulations or cellular decompositions are too
expensive)

Two directions for generalization: more general definable
atomic functions, and more complex formulae defining sets.

More general functions.
The key ingredient in algebraic bound is Bezout’s theorem.

Khovanskii: generalization of Bezout to Pfaffian functions.
Hence generalizations of Petrovskii, etc. to semi-Pfaffian sets.

One can introduce the complexity of a definable function
axiomatically, à la Benedetti-Risler, and obtain Betti numbers
bounds in terms of this complexity. (One of the axioms is an
analogy of Bezout.)
But more interesting...
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More complex formulae.

For definiteness, semialgebraic case.
For s distinct polynomials of degrees ≤ d in Rn.

Using classical technique,
Basu: sets defined by monotone Boolean combinations
of only ≥-inequalities or of only >-inequalities
b(S) ≤ O(sd)n;
Montaña, Morais, Pardo, Yao: compact sets defined by
arbitrary Boolean combinations of equations and
inequalities b(S) ≤ O(sd)2n.
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Any of the above theorems implies

Theorem (A. Gabrielov, NV)

Let ν = min{m + 1,n −m, s}. Then the k-th Betti number

bm(S) ≤ O(νsd)n.

Proof.
Apply [Basu] to Tm(S).
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Projections

Let ρ : Rn+r → Rn, and Y = ρ(X ) where X is a a semialgebraic
set defined by a Boolean combination of atomic formulae h ∗ 0
where h ∈ {>,≥,=}, deg(h) ≤ d and the number of distinct
polynomials h is s.

Effective quantifier elimination produces Boolean combination
of equations and inequalities defining Y , and implies

bk (Y ) ≤ (sd)O(n2r).

Pfaffian functions do not admit quantifier elimination.

Another approach, which also produces a better bound in
semialgebraic case.
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Definition
For two maps f1 : X1 → Y and f2 : X2 → Y , the fibered product

X1 ×Y X2 := {(x1,x2) ∈ X1 × X2| f1(x1) = f2(x2)}.

For f : X → Y , let Wp := X ×Y · · · ×Y X︸ ︷︷ ︸
p+1 times

Example

Let (x,y) be coordinates in Rn+r , let f = ρ.
For X ⊂ Rn+r and Y = ρ(X ) ⊂ Rn, the set Wp ⊂ Rn+(p+1)r is
defined by the same equations and inequalities as X , applied to
y and each of p + 1 copies of x.
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Theorem (A. Gabrielov, V., T. Zell)
Let f : X → Y be a continuous surjective closed o-minimal map.
Then there is a spectral sequence E r

p,q converging to H∗(Y )
with

E1
p,q = Hq(Wp).

Corollary
For a continuous surjective closed o-minimal map f : X → Y,

bk (Y ) ≤
∑

p+q=k

bq(Wp)

for any k.
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The requirement for f to be closed can be relaxed but not
completely removed:
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By the approximation theorem,
bk (Y ) ≤ bk (Tm(Y )) = bk (ρ(Tm(X ))).

Tm(X ) is compact⇒ the spectral sequence is applicable to ρ.

Recall that X is a semialgebraic set defined by a Boolean
combination of atomic formulae h ∗ 0 where h ∈ {>,≥,=},
deg(h) ≤ d and the number of distinct polynomials h is s.

Corollary

bk (Y ) ≤
∑

0≤i≤k

O((i + 1)(k + 1)sd)n+(i+1)r ≤ ((k + 1)sd)O(n+kr)

Better than quantifier elimination bound

bk (Y ) ≤ (sd)O(n2r).
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Formulae with quantifiers

Y = ρ(X ) is equivalent to Y = {y ∈ Rn| ∃ x ∈ Rr ((x,y) ∈ X )}

In general

Y = {y ∈ Rn| ∃ x1 ∈ Rr1 ∀ x2 ∈ Rr2∃ x3 ∈ Rr3 · · · ∀ xt ∈ Rrt

((x1, . . . ,xt ,y) ∈ X )},

where X ⊂ Rr1+···+rt+n is defined by a Boolean combination.
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Example: Y = {y ∈ Rn| ∀ x ∈ Rr ((x,y) ∈ X )}.

Easy by Alexander’s duality: ∀ = ¬∃¬

General approach.

Let X be complement(X )⇒ Y = ρ(X )

If S is represented by Sε,δ then ρ(S) is represented by ρ(Sε,δ)

By the approximation theorem,
bk (Y ) ≤ bk (Tm(Y )) = bk ((Tm(ρ(X ))))

By definition of Tm,
bk ((Tm(ρ(X )))) = bk (ρ(Xε0,δ0) ∪ · · · ∪ ρ(Xεm,δm))

= bk (ρ(Xε0,δ0) ∩ · · · ∩ ρ(Xεm,δm))

By Alexander’s duality,
= bn−k−1(ρ(Xε0,δ0) ∩ · · · ∩ ρ(Xεm,δm))
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bn−k−1(ρ(Xε0,δ0) ∩ · · · ∩ ρ(Xεm,δm))

By Mayer-Vietoris,

=
∑

J⊂{1,...,m+1} bn−k−2+|J|(
⋃

j∈J ρ(Xεj ,δj ))

=
∑

J⊂{1,...,m+1} bn−k−2+|J|(ρ(
⋃

j∈J Xεj ,δj ))

Xεj ,δj is open, so the spectral sequence is applicable to ρ
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Y = {y ∈ Rn| ∃ x1 ∈ Rr1 ∀ x2 ∈ Rr2∃ x3 ∈ Rr3 · · · ∀ xt ∈ Rrt

((x1, . . . ,xt ,y) ∈ X )},

where X ⊂ Rr1+···+rt+n is defined by a Boolean combination of
atomic formulae h ∗ 0 where h ∈ {>,≥,=}, deg(h) ≤ d and the
number of distinct polynomials h is s.

bk (Y ) ≤ (2t2
dsnr1 · · · rt)

O(2t nr1···rt ).

Doubly exponential in the number of quantifier alternations.

Nicolai Vorobjov (Bath) Approximation of definable sets by compact families, and upper bounds on homotopy and homology



Y = {y ∈ Rn| ∃ x1 ∈ Rr1 ∀ x2 ∈ Rr2∃ x3 ∈ Rr3 · · · ∀ xt ∈ Rrt

((x1, . . . ,xt ,y) ∈ X )},

where X ⊂ Rr1+···+rt+n is defined by a Boolean combination of
atomic formulae h ∗ 0 where h ∈ {>,≥,=}, deg(h) ≤ d and the
number of distinct polynomials h is s.

bk (Y ) ≤ (2t2
dsnr1 · · · rt)

O(2t nr1···rt ).

Doubly exponential in the number of quantifier alternations.

Nicolai Vorobjov (Bath) Approximation of definable sets by compact families, and upper bounds on homotopy and homology



Y = {y ∈ Rn| ∃ x1 ∈ Rr1 ∀ x2 ∈ Rr2∃ x3 ∈ Rr3 · · · ∀ xt ∈ Rrt

((x1, . . . ,xt ,y) ∈ X )},

where X ⊂ Rr1+···+rt+n is defined by a Boolean combination of
atomic formulae h ∗ 0 where h ∈ {>,≥,=}, deg(h) ≤ d and the
number of distinct polynomials h is s.

bk (Y ) ≤ (2t2
dsnr1 · · · rt)

O(2t nr1···rt ).

Doubly exponential in the number of quantifier alternations.

Nicolai Vorobjov (Bath) Approximation of definable sets by compact families, and upper bounds on homotopy and homology


