Boundaries of reduced C*-algebras
of discrete groups

Matthew Kennedy
(joint work with Mehrdad Kalantar)

Carleton University, Ottawa, Canada

June 23, 2014



A discrete group G is amenable if there is a left-invariant mean
A:07°(G) — C,

i.e. a unital positive G-invariant linear map.



Definition

A discrete group G is amenable if there is a left-invariant mean
A:07°(G) — C,
i.e. a unital positive G-invariant linear map.

In this case, A is a unital positive G-equivariant projection.



Reframed Definition

A discrete group G is amenable if there is a unital positive
G-equivariant projection

A:£2(G) — C.



Reframed Definition

A discrete group G is amenable if there is a unital positive
G-equivariant projection

A:£2(G) — C.

Therefore, G is non-amenable if C is “too small” to be the range of a
unital positive G-equivariant projection on £>°(G).



Consider the minimal C*-subalgebra Ag of ¢°°(G) such that there is a
unital positive G-equivariant projection

P:6®(G) = Ag.



Consider the minimal C*-subalgebra Ag of ¢°°(G) such that there is a
unital positive G-equivariant projection

P:6®(G) = Ag.

The size of Ag should somehow “measure” the non-amenability of G.



Theorem (Kalantar-K 2014)

There is a unique minimal C*-algebra Ag arising as the range of a
unital positive G-equivariant projection

P:6®(G) = Ag.

The algebra Ag is isomorphic to the algebra C(OrG) of continuous
functions on the Furstenberg boundary OrG of G.



Motivation



Kirchberg proved that every exact C*-algebra can be embedded into a
nuclear C*-algebra.



Kirchberg proved that every exact C*-algebra can be embedded into a
nuclear C*-algebra.

In the separable case, Kirchberg and Phillips proved the nuclear
C*-algebra can be taken to be the Cuntz algebra on two generators.



Ozawa conjectured the existence of what he calls a “tight” nuclear
embedding.

Conjecture (Ozawa 2007)

Let A be an exact C*-algebra. There is a canonical nuclear
C*-algebra N(A) such that

A C N(A) C I(A),

where /(A) denotes the injective envelope of A.



Ozawa conjectured the existence of what he calls a “tight” nuclear
embedding.

Conjecture (Ozawa 2007)

Let A be an exact C*-algebra. There is a canonical nuclear
C*-algebra N(A) such that

A C N(A) C I(A),
where /(A) denotes the injective envelope of A.

The algebra N'(A) will inherit many properties from A, for example
simplicity and primality.



Ozawa proved this conjecture for the reduced C*-algebra of the free
group F, on n > 2 generators.



Ozawa proved this conjecture for the reduced C*-algebra of the free
group I, on n > 2 generators.

Theorem (Ozawa 2007)

Let C;(F,) denote the reduced C*-algebra of F,, for n > 2. There is a
canonical nuclear C*-algebra N(C;(F,)) such that

C7(Fr) € N(C;(Fn)) C [(C7(Fn)),

where I(C;(F,)) denotes the injective envelope of C}(FF,).



Ozawa proved this conjecture for the reduced C*-algebra of the free
group F, on n > 2 generators.

Theorem (Ozawa 2007)

Let C;(F,) denote the reduced C*-algebra of F,, for n > 2. There is a
canonical nuclear C*-algebra N(C;(F,)) such that

Cr(Fn) C N(C7(Fn)) C I(C7(Fn)),
where I(C;(F,)) denotes the injective envelope of C}(FF,).

Note that C;(F,) is exact since F, is an exact group.



Ozawa takes N(C; (F,)) = C(0F,) x,F,, where OF, denotes the
hyperbolic boundary of Fp,.



Ozawa takes N(C;(F,)) = C(0F,) x,F,, where dF, denotes the
hyperbolic boundary of FF,,.

Key Proposition (Ozawa 2007)

Let u be a quasi-invariant doubly ergodic measure on 9G. If

¢ : C(OF,) = L=(0G, u)

is a unital positive [F,-equivariant map, then ¢ = id.



Equivariant Injective Envelopes



An operator system is a unital self-adjoint subspace of a C*-algebra.



An operator system is a unital self-adjoint subspace of a C*-algebra.

A G-operator system is an operator system equipped with the action
of a group G, i.e. a unital homomorphism from G into the group of
order isomorphisms on S.



Let C be a category consisting of objects and morphisms. An object /
is injective in C if, for every pair of objects E C F and and every
morphism ¢ : E — [, there is an extension @ : F — |.
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completely positive maps, we get injectivity.



Let C be a category consisting of objects and morphisms. An object /
is injective in C if, for every pair of objects E C F and and every
morphism ¢ : E — [, there is an extension @ : F — |.

When the objects are operator systems and the morphisms are unital
completely positive maps, we get injectivity.

When the objects are G-operator systems and the morphisms are
G-equivariant unital completely positive maps, we get G-injectivity.



The injective envelope of an operator system S is the minimal
injective operator system containing S.



The injective envelope of an operator system S is the minimal
injective operator system containing S.

The G-injective envelope of a G-operator system S is the minimal
G-injective operator system containing S.



Theorem (Hamana 1985)

If S is a G-operator system, then S has a unique G-injective envelope
I6(S). Every unital completely isometric G-equivariant embedding

p:S—=>T,
extends to a unital completely isometric G-equivariant embedding

@:lg(S)—~T.



Theorem (Hamana 1985)

If S is a G-operator system, then S has a unique G-injective envelope
I6(S). Every unital completely isometric G-equivariant embedding

p:S—=>T,
extends to a unital completely isometric G-equivariant embedding

@:lg(S)—~T.

Since there is a unital completely isometric G-equivariant embedding
of S into £°°(G, S) there are unital completely isometric G-equivariant
embeddings

S C lg(S) C (G, S).



Upshot

If S is an operator system equipped with a G-action, then there are
unital completely isometric G-equivariant embeddings

S C Ig(S) C (G, S),

and a unital positive G-equivariant projection P: {*°(G,S) — Ig(S).



Upshot

If S is an operator system equipped with a G-action, then there are
unital completely isometric G-equivariant embeddings

S C Ig(S) C (G, S),
and a unital positive G-equivariant projection P: {*°(G,S) — Ig(S).

The G-injective envelope Ig(S) has a natural C*-algebra structure
(induced by the Choi-Effros product).



Corollary

Let G be a discrete group acting trivially on C and let I(C) denote
the G-injective envelope of C. Then

C C I6(C) C £°(G),
and there is a unital positive G-equivariant projection

P:0>(G) = Ig(C).



Corollary

Let G be a discrete group acting trivially on C and let I(C) denote
the G-injective envelope of C. Then

C C I6(C) C £°(G),
and there is a unital positive G-equivariant projection
P:0*(G) — Ig(C).
The G-injective envelope Ig(C) is a commutative C*-algebra equipped

with a G-action, so there is a compact G-space space 9yG such that

I6(C) ~ C(OuG).

We call 4G the Hamana boundary of G.



The Furstenberg Boundary



Let X be a compact G-space.
1. The G-action on X is minimal if the G-orbit

Gx={sx|se G}

is dense in X for every x € X.



Definition
Let X be a compact G-space.
1. The G-action on X is minimal if the G-orbit

Gx={sx|se G}
is dense in X for every x € X.

2. The G-action on X is strongly proximal if, for every probability
measure v on X, the weak*-closure of the G-orbit

Gv={sv|se G}

contains a point mass d, for some x € X.



Definition (Furstenberg 1972)

A compact G-space X is a boundary if it is minimal and strongly
proximal.



Definition (Furstenberg 1972)

A compact G-space X is a boundary if it is minimal and strongly
proximal.

Key Property

If X is a boundary, then for every probability measure v on X, the
weak*-closure of the G-orbit Gv contains all of X.

Here x € X is identified with the point mass d, on X.



Theorem (Kalantar-K 2014)

The Hamana boundary Oy G is a boundary in the sense of Furstenberg.



Theorem (Furstenberg 1972)

Every group G has a unique boundary OrG that is universal, in the
sense that every boundary of G is a continuous G-equivariant image of
OfG.
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Theorem (Furstenberg 1972)

Every group G has a unique boundary OrG that is universal, in the
sense that every boundary of G is a continuous G-equivariant image of
OfG.

We refer to OfG as the Furstenberg boundary of G.
Theorem (Kalantar-K 2014)

For a discrete group G, the Hamana boundary OyG can be identified
with the Furstenberg boundary OfG.



Properties of injective envelopes (injectivity, rigidity and essentiality)
imply corresponding results about the Furstenberg boundary.
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we have the following rigidity results:
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imply corresponding results about the Furstenberg boundary.

Theorem (Kalantar-K 2014)

Let G be a discrete group and let OrG denote the Furstenberg
boundary of G. Then the C*-algebra C(OrG) is G-injective. Moreover,
we have the following rigidity results:

1. Every unital positive G-equivariant map from C(OgG) is
completely isometric.



Properties of injective envelopes (injectivity, rigidity and essentiality)
imply corresponding results about the Furstenberg boundary.

Theorem (Kalantar-K 2014)

Let G be a discrete group and let OrG denote the Furstenberg
boundary of G. Then the C*-algebra C(OrG) is G-injective. Moreover,
we have the following rigidity results:

1. Every unital positive G-equivariant map from C(OgG) is
completely isometric.

2. The only positive G-equivariant map from C(OrG) to itself is the
identity map.



Properties of injective envelopes (injectivity, rigidity and essentiality)
imply corresponding results about the Furstenberg boundary.

Theorem (Kalantar-K 2014)

Let G be a discrete group and let OrG denote the Furstenberg
boundary of G. Then the C*-algebra C(OrG) is G-injective. Moreover,
we have the following rigidity results:

1. Every unital positive G-equivariant map from C(OgG) is
completely isometric.

2. The only positive G-equivariant map from C(OrG) to itself is the
identity map.

3. If M is a minimal G-space, then there is at most one unital
G-equivariant map from C(OrG) to C(M), and if such a map
exists, then it is a unital injective *-~homomorphism.



Exactness and Nuclear Embeddings



Definition (Kirchberg-Wasserman 1999)

A discrete group G is exact if the reduced C*-algebra C;(G) is exact.



Ozawa proved that a discrete group G is exact if and only the
G-action on its Stone-Cech compactification 8G is amenable.
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Let G be a discrete group. Then G is exact if and only if the G-action
on on the Furstenberg boundary OrG is amenable.

Applying a result of Anantharaman-Delaroche gives the following
corollary.



Ozawa proved that a discrete group G is exact if and only the
G-action on its Stone-Cech compactification 8G is amenable.

Theorem (Kalantar-K 2014)

Let G be a discrete group. Then G is exact if and only if the G-action
on on the Furstenberg boundary OrG is amenable.

Applying a result of Anantharaman-Delaroche gives the following
corollary.

Corollary

If G is a discrete exact group, then the reduced crossed product
C(OrG) %, G is nuclear.



Theorem (Kalantar-K 2014)

Let G be a discrete exact group. Then there is a canonical nuclear
C*-algebra N(C;(G)) such that

C7(6) C N(C/(G)) € [(C;(G)),

where I(C;(G)) denotes the injective envelope of C;(G).
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Let G be a discrete exact group. Then there is a canonical nuclear
C*-algebra N(C;(G)) such that
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N(C;(G)) = C(0eG) %, G.



Theorem (Kalantar-K 2014)

Let G be a discrete exact group. Then there is a canonical nuclear
C*-algebra N(C;(G)) such that

C7(6) C N(C/(G)) € [(C;(G)),

where I(C;(G)) denotes the injective envelope of C;(G).

We take
N(C;(G)) = C(0eG) %, G.

r
Note: This is non-separable in general, but can be replaced by a

separable nuclear C*-algebra at the expense of no longer being
canonical.



C*-Simplicity



Open Problem

Let G be a discrete group. When is G C*-simple, i.e. when is the
reduced group C*-algebra C;(G) simple?
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amenable normal subgroup R,(G) called the amenable radical of G. If
G is C*-simple, then R,(G) is necessarily trivial.



Open Problem

Let G be a discrete group. When is G C*-simple, i.e. when is the
reduced group C*-algebra C;(G) simple?

Day showed in 1957 that every discrete group G has a largest
amenable normal subgroup R,(G) called the amenable radical of G. If
G is C*-simple, then R,(G) is necessarily trivial.

Conjecture (de la Harpe, ?)

The reduced group C*-algebra C;(G) is simple if and only if the
amenable radical R,(G) is trivial.



Definition
Let G be a discrete group with identity element e. The G-action on a
compact G-space X is topologically free if, for every s € G, the set

X\X° = {xe X| sx#x}

is dense in X.



The property of the G-action on the Furstenberg boundary 0¢G being
topologically free is an intermediate property between C*-simplicity
and triviality of the amenable radical R,(G).



The property of the G-action on the Furstenberg boundary 0¢G being
topologically free is an intermediate property between C*-simplicity
and triviality of the amenable radical R,(G).

Theorem (Kalantar-K 2014)

Let G be a discrete group.

1. If the G-action on OfG is topologically free, then R,(G) is trivial.

2. If G is exact, and the reduced C*-algebra C;(G) is simple, then
the G-action on OrG is topologically simple.



C*/(G) simple

!

R,(G) trivial

T~

C(OrG) %, G simple G ~ OfG topo-

v logically free

Figure: Implications for an arbitrary discrete group G.



*(G) simple

:

terlaI

/

C(OrG) %, Gsnmple G ~ OfG topo-
logically free

Figure: Implications for a discrete exact group G.



A Tarski monster group is a finitely generated group with the property
that every nontrivial subgroup is cyclic of order p, for some fixed
prime p.



A Tarski monster group is a finitely generated group with the property

that every nontrivial subgroup is cyclic of order p, for some fixed
prime p.

Theorem (Olshanskii 1982)

Tarski monster groups exist for every prime p > 107°.



A Tarski monster group is a finitely generated group with the property
that every nontrivial subgroup is cyclic of order p, for some fixed
prime p.

Theorem (Olshanskii 1982)

Tarski monster groups exist for every prime p > 107°.

This answered a question of von Neumann about the existence of
non-amenable groups which do not contain non-abelian free groups.



It is currently unknown whether Tarski monster groups are C*-simple.



It is currently unknown whether Tarski monster groups are C*-simple.

Theorem (Kalantar-K 2014)

If G is a Tarski monster group, then the G-action on the Furstenberg
boundary OrG is topologically free.



Rigidity of Maps



Theorem (Kalantar-K 2014)

Let G be a non-amenable hyperbolic group, and let p. be an irreducible
probability measure on G with finite first moment. Let v be a
u-stationary probability measure on the hyperbolic boundary 0G. If

¢ : C(0G) = L=(0G,v)

is a unital positive G-equivariant map, then ¢ = id.



Theorem (Kalantar-K 2014)

Let G be a non-amenable hyperbolic group, and let p. be an irreducible
probability measure on G with finite first moment. Let v be a
u-stationary probability measure on the hyperbolic boundary 0G. If

¢ : C(0G) = L=(0G,v)
is a unital positive G-equivariant map, then ¢ = id.

We apply Jaworski's theory of strongly approximately transitive
measures, combined with a uniqueness result of Kaimanovich for
stationary measures.



Corollary

Let G be as above, and let OgG denote the Furstenberg boundary of
G. Then

16(C(0G)) = C(OrG),
where I(C(0G)) denotes the G-injective envelope of C(OG).



Corollary

Let G be as above, and let OgG denote the Furstenberg boundary of

G. Then
16(C(0G)) = C(OrG),

where Ig(C(0G)) denotes the G-injective envelope of C(OG).

The Furstenberg boundary 9gG can be thought of as a “projective
cover” of the hyperbolic boundary JG.



Quantum Groups



The operator-algebraic construction of the Furstenberg boundary
generalizes to certain locally compact quantum groups.



The operator-algebraic construction of the Furstenberg boundary
generalizes to certain locally compact quantum groups.

Suggests this provides an appropriate quantum-group-theoretic
analogue of the Furstenberg boundary.



The operator-algebraic construction of the Furstenberg boundary
generalizes to certain locally compact quantum groups.

Suggests this provides an appropriate quantum-group-theoretic
analogue of the Furstenberg boundary.

Many of our results hold in this setting. We intend to pursue this
further...



Thanks!



