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0. Introduction

Fundamental Diagram
For classifying space D of MHS of specified type,

DSL(2),val ↪→ DBS,valy y
DΣ,val ←−−−− D♯

Σ,val −−−−→ DSL(2) DBSy y
DΣ ←−−−− D♯

Σ

Hope to understand Hodge theoretic aspect of MS by this.
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Mirror symmetry for quintic 3-folds

Mirror symmetry for A-model of quintic 3-fold V and B-model of
its mirror V ◦ was predicted in [CDGP91], and proved in following
(1)–(3), which are equivalent.
Every statement is near large radius point q0 of complexified Kähler
moduli KM(V ) and maximally unipotent monodromy point p0 of
complex moduli M(V ◦).

t := y1/y0, u := t/2πi and q := et = e2πiu from 3.3 below
and respective ones in 3.4 below.
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(1) (Potential. [LLuY97]) ΦV
GW(t) = ΦV ◦

GM(t).

(2) (Solutions. [Gi96], [Gi97p])

JV := 5H
(
1 + tH +

dΦ
dt

H2

5
+

(
t
dΦ
dt

− 2Φ
)H3

5

)
IV := 5H(y0 + y1H + y2H

2 + y3H
3)

Then, y0JV = IV .

(3) (Variation of Hodge structure. [Morrison97])
(q0 ∈ KM(V )) ∼← (p0 ∈ M(V ◦)) by canonical coordinate
q = exp(2πiu), lifts over the punctured KM(V ) ∼← M(V ◦) to

(HV , S,∇middle,HV
Z ,F ; 1, [pt]) ∼← (HV ◦

, Q,∇GM,HV ◦

Z ,F ; Ω̃, g0).
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Our (4) below is equivalent to (1)–(3).

(4) (Log period map)
σ : monodromy cone transformed by a level structure into End of
reference fiber of local system for A- and B- models.
Then, we have diagram of horizontal log period maps

(q0 ∈ KM(V )) ∼← (p0 ∈ M(V ◦))

↘ ↙

([σ, exp(σC)F0] ∈ Γ(σ)gp\Dσ)

with extensions of specified sections in (3), where (σ, exp(σC)F0) is
nilpotent orbit and Γ(σ)gp\Dσ is fine moduli of LH of specified type.
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Open mirror symmetry for quintic 3-folds

(5) (Inhomogenous solutions, [Walcher07], [PSW08p], [MW09])
L: Picard-Fuchs differential operator for quintic mirror.

TA =
u

2
±

(1
4

+
1

2π2

∑
d odd

ndq
d/2

)
.

TB =
∫ C+

C−

Ω, {C±, line} = {x1 + x2 = x3 + x4 = 0} ∩ Xψ.

L(y0(z)TA(z)) = L(TB(z))(=
15

16π2

√
z) (z =

1
ψ5

).
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In a neighborhood of MUM point p0, we have the following (6).

(6) (Computations of admissible normal function and domainwall
tension on MUM point)
HQ := HV ◦

Q , T := TB

LQ : translation of local system Q ⊕HQ by T e0 in Ext1(Q,HQ)
JLQ

: Néron model for admissible normal function over T e0, whose
weak fan is constructed in [KNU13p, Néron models for
admissible normal functions]

S := (z1/2-plane) −−−−→ JLQ

transl≅ HO/(F 2 + HQ)
pol
≅ (F 2)∗/HQy

J̄LQ
≅ HO/(F 1 + HQ) ≅ (F 3)∗/HQ
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To state following assertions, we use e0, e1 which are part of basis of
HO respecting Deligne decomposition at p0 (see 6 (2B)).

(6.1) T e0 as truncated normal function S → J̄1,LQ
.

(6.2) Truncated normal function in (6.1) uniquely lifts to admissible
normal function S → J1,LQ

.

(6.3) Followings are mirror:

0 → H4(V,Z) → H4(V − Lg) → H2(Lg) → 0

0 → Ze1(grM
2 ) → 1

2Ze1(grM
2 ) → (2-torsion) → 0

Here Lg is real Lagrangian, and M = M(N,W ) around MUM point p0.

(6.4) (5) tells that inverse of admissible normal function in (6.2) from its
image is given by 16π2/15 times L applying to extension of LQ.
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1. Log mixed Hodge theory

1.1. Category B(log)

S : subset of analytic space Z.
Strong topology of S in Z is strongest one among topologies
on S s.t. for ∀ analytic space A and ∀ morphism f : A → Z
with f(A) ⊂ S, f : A → S is continuous.

Log structure on local ringed space S is sheaf of monoids M
on S and homomorphisim α : M → OS s.t. α−1O×

S
∼→ O×

S .

fs means finitely generated, integral and saturated.
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Analytic space is call log smooth if, locally, it is isomorphic
to open set of toric variety.

Log manifold is log local ringed space over C which has open
covering (Uλ)λ satisfying:
For each λ, there exist log smooth fs log analytic space Zλ,
finite subset Iλ of global log differential 1-forms Γ(Zλ, ω1

Zλ
),

and isomorphism of log local ringed spaces over C between
Uλ and open subset in strong topology of
Sλ := {z ∈ Zλ | image of Iλ in stalk ω1

z is zero} in Zλ.
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1.2. Ringed space (Slog,Olog
S )

S ∈ B(log).
Slog := {(s, h) | s ∈ S, h : Mgp

s → S1 hom. s.t. h(u) = u/|u| (u ∈ O×
S,s)}

endowed with weakest topology s.t. followings are continuous.
(1) τ : Slog → S, (s, h) 7→ s.
(2) For ∀open U ⊂ S and ∀f ∈ Γ(U,Mgp), τ−1(U) → S1, (s, h) 7→ h(fs).

τ is proper, surjective with τ−1(s) = (S1)r(s),
r(s) := rank(Mgp/O×

S )s varies with s ∈ S.
Define L on Slog as fiber product:

L exp−−−−→ τ−1(Mgp) ∋ (f at (s, h))y y y
Cont(∗, iR)

exp−−−−→ Cont(∗,S1) ∋ h(f)
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ι : τ−1(OS) → L is induced from

f ∈ τ−1(OS)
exp−−−−→ τ−1(O×

S ) ⊂ τ−1(Mgp)y y y
(f − f̄)/2 ∈ Cont(∗, iR)

exp−−−−→ Cont(∗,S1)

Define

Olog
S :=

τ−1(OS) ⊗ SymZ(L)
(f ⊗ 1 − 1 ⊗ ι(f) | f ∈ τ−1(OS))

.

Thus τ : (Slog,Olog
S ) → (S,OS) as ringed spaces over C.

For s ∈ S and t ∈ τ−1(s) ⊂ Slog, let tj ∈ Lt (1 ≤ j ≤ r(s)) s.t. images
in (Mgp/O×

S )s of exp(tj) form a basis.
Then, Olog

S,t = OS,s[tj (1 ≤ j ≤ r(s)] is polynomial ring.
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1.3. Toric variety

σ : nilpotent cone in gR, i.e., sharp cone generated by finite number
of mutually commutative nilpotent elements.
Γ : subgroup of GZ, and Γ(σ) := Γ ∩ exp(σ).
Assume σ is generated over R≥0 by log Γ(σ).
P (σ) := Γ(σ)∨ = Hom(Γ(σ),N).
toricσ := Hom(P (σ),Cmult) ⊃ torusσ := Hom(P (σ)gp,C×),

0 → Z → C → C× → 1 induces
0 → Hom(P (σ)gp,Z) → Hom(P (σ)gp,C) e−→ Hom(P (σ)gp,C×) → 1,
where e(z ⊗ log γ) := e2πiz ⊗ γ (z ∈ C, γ ∈ Γ(σ)gp = Hom(P (σ)gp,Z)).

ρ ≺ σ induces surjection P (ρ) ← P (σ) hence open toricρ ↪→ toricσ.
0ρ ∈ toricρ is P (ρ) → Cmult; 1 7→ 1, other elements of P (ρ) 7→ 0.
0ρ ∈ toricρ ⊂ toricσ by above open immersion.
Then, as set, toricσ = {e(z)0ρ | ρ ≺ σ, z ∈ σC/(ρC + log Γ(σ)gp)}.
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For S := toricσ, polar coordinate R≥0 × S1 → R≥0 · S1 = C induces

τ : Slog = Hom(P (σ),Rmult
≥0 ) × Hom(P (σ),S1)

= {(e(iy)0ρ, e(x)) | ρ ≺ σ, x ∈ σR/(ρR + log Γ(σ)gp), y ∈ σR/ρR}
→ S = Hom(P (σ),Cmult),

τ(e(iy)0ρ, e(x)) = e(x + iy)0ρ.

By 0 → ρR/ log Γ(ρ)gp → σR/ log Γ(σ)gp → σR/(ρR + log Γ(σ)gp) → 0,
τ−1(e(a + ib)0ρ) = {(e(ib)0ρ, e(a + x)) |x ∈ ρR/ log Γ(ρ)gp} ≅ (S1)r,
as set, where r := rank ρ varies with ρ ≺ σ.

Hσ = (Hσ,Z,W, (〈 , 〉w)w) : canonical local system on Slog by
representation π1(Slog) = Γ(σ)gp ⊂ GZ = Aut(H0,W, (〈 , 〉w)w).
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1.4. Graded polarized LMH

S ∈ B(log).
Pre-graded polarized log mixed Hodge structure on S is
H = (HZ,W, (〈 , 〉w)w, HO) consisting of
HZ : local system of Z-free modules of finite rank on Slog,
W : increasing filtration W of HQ := Q ⊗ HZ,
〈 , 〉w : nondegenerate (−1)w-symmetric Q-bilinear form on grW

w ,
HO : locally free OS-module on S satisfying:
∃ Olog

S ⊗Z HZ ≅ Olog
S ⊗OS

HO (log Riemann-Hilbert correspondence),
∃ FHO : decreasing filt. of HO s.t. F pHO, HO/F pHO locally free.
Put F p := Olog

S ⊗OS F pHO. Then τ∗F
p = F pHO.

〈F p(grW
w ), F q(grW

w )〉w = 0 (p + q > w).

16



Pre-GPLMH on S is GPLMH on S if its pullback to each s ∈ S
is GPLMH on s in the following sense.
Let (HZ,W, (〈 , 〉w)w,HO) be a pre-GPLMH on log point s.

(1) (Admissibility) ∃ M(N,W ) for ∀ logarithm N of local monodromy
of local system (HR,W, (〈 , 〉w)w).

(2) (Griffiths transversality) ∇F p ⊂ ω1,log
s ⊗ F p−1, where ω1,log

s is log
diff. 1-forms on (slog,Olog

s ), ∇ = d ⊗ 1HZ
: Olog

s ⊗ HZ → ω1,log
s ⊗ HZ.

(3) (Positivity) For t ∈ slog and C-alg. hom. a : Olog
s,t → C,

F (a) := C ⊗Olog
s,t

Ft a filtration on HC,t.

Then, (HZ,t(grW
w ), 〈 , 〉w, F (a)) is PHS of weight w if a is sufficiently

twisted: | exp(a(log qj))| ≪ 1 (∀j) for (qj)1≤j≤n ⊂ Ms which induce
generators of Ms/O×

s .
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1.5. Nilpotent orbit

Fix Λ := (H0,W, (〈 , 〉w)w, (hp,q)p,q), where
H0 is free Z-module of finite rank,
W is increasing filtration on H0,Q := Q ⊗ H0,
〈 , 〉w is nondegenerate (−1)w-symmetric form on grW

w ,
(hp,q)p,q is set of Hodge numbers.

D : classifying space of GPMHS for data Λ, consisting of all
Hodge filtrations.

Ď : “compact dual”.
GA := Aut(H0,A,W, (〈 , 〉w)w),
gA := End(H0,A,W, (〈 , 〉w)w) (A = Z,Q,R,C).

σ ⊂ gR : nilpotent cone, i.e., sharp cone generated by finite number
of mutually commutative nilpotent elements.
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Z ⊂ Ď is σ-nilpotent orbit if (1)–(4) hold for F ∈ Z.
(1) Z = exp(σC)F .
(2) ∃ M(N,W ) for any N ∈ σ.
(3) NF p ⊂ F p−1 for any N ∈ σ any p.
(4) If N, . . . , Nn generate σ and yj ≫ 0 (∀j), then exp(

∑
j iyjNj)F ∈ D.

Weak fan Σ in gQ is set of nilpotent cones in gR, defined over Q, s.t.
(5) Every σ ∈ Σ is admissible relative to W .
(6) If σ ∈ Σ and τ ≺ σ, then τ ∈ Σ.
(7) If σ, σ′ ∈ Σ have a common interior point and

if there exists F ∈ Ď such that (σ, F ) and (σ′, F )
generate nilpotent orbits, then σ = σ′.

Let Σ be weak fan and Γ be subgroup of GZ.
Σ and Γ are strongly compatible if (8)–(9) hold:

(8) If σ ∈ Σ and γ ∈ Γ, then Ad(γ)σ ∈ Σ.
(9) For ∀ σ ∈ Σ, σ is generated by log Γ(σ), where Γ(σ) := Γ ∩ exp(σ).

19



1.6. Moduli of LMH of type Φ

Φ = (Λ,Σ, Γ) : Λ is from 1.4, Σ weak fan and Γ subgroup of GZ

s.t. Σ and Γ are strongly compatible.

σ ∈ Σ. S := toricσ, Hσ = (Hσ,Z, W, (〈 , 〉w)w) on Slog.

Universal pre-GPLMH H on Ěσ := toricσ ×Ď is given by Hσ

together with isomorphism Olog

Ěσ
⊗Z Hσ,Z = Olog

Ěσ
⊗OĚσ

HO, where
HO := OĚσ

⊗ H0 is the free OĚσ
-module coming from that on Ď

endowed with universal Hodge filtration F .

Eσ := {x ∈ Ěσ |H(x) is a GPLMH}.
Note that slits appear in Eσ because of log-point-wise Griffiths
transversality 1.3 (2) and positivity 1.3 (3), or equivalently 1.4 (3)
and 1.4 (4) respectively.

As set, DΣ := {(σ,Z) ∈ Ďorb |nilpotent orbit, σ ∈ Σ, Z ⊂ Ď}.
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Let σ ∈ Σ.
Assume Γ is neat.
Structure as object of B(log) on Γ\DΣ is introduced by diagram:

Eσ

GPLMH
⊂ Ě := toricσ ×ĎyσC-torsor

Γ(σ)gp\Dσyloc. isom.

Γ\DΣ

Action of h ∈ σC on (e(a)0ρ, F ) ∈ Eσ is (e(h + a)0ρ, exp(−h)F ),
and projection is (e(a)0ρ, F ) 7→ (ρ, exp(ρC + a)F ).
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S ∈ B(log).

LMH of type Φ on S is a pre-GPLMH H = (HZ,W, (〈 , 〉w)w,HO)
endowed with Γ-level structure
µ ∈ H0(Slog,Γ\ Isom((HZ,W, (〈 , 〉w)w), (H0,W, (〈 , 〉w)w)))
satisfying the following condition: For ∀ s ∈ S, ∀ t ∈ τ−1(s) = slog,
∀ representative µ̃t : HZ,t

∼→ H0, ∃ σ ∈ Σ s.t. σ contains µ̃tPsµ̃
−1
t and

(σ, µ̃t(C ⊗Olog
S,t

Ft)) generates a nilpotent orbit.

Here Ps := Image(Hom((MS/O×
S )s,N) ↪→ π1(slog) → Aut(HZ,t)) is

local monodromy monoid Ps of HZ at s.
(Then, the smallest such σ exists.)
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Theorem. (i) Γ\DΣ ∈ B(log), which is Hausdorff.
If Γ is neat, Γ\DΣ is log manifold.

(ii) On B(log), Γ\DΣ represents functor LMHΦ of LMH of type Φ.

Log period map. Let S ∈ B(log). Then we have isomorphism

LMHΦ(S) ∼→ Map(S, Γ\DΣ), H 7→
(
S ∋ s 7→ [σ, exp(σC)µ̃t(C⊗Olog

S,t
Ft)]

which is functorial in S.

Log period map is a unified compactification of period map and normal
function of Griffiths.
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3. Quintic threefolds

3.2. Quintic threefold and its mirror

V : general quintic 3-fold in P4.

Vψ : f :=
∑5

j=1 x5
j + ψ

∏5
j=1 xj = 0 in P4 (ψ ∈ P1).

G := {(aj) ∈ (µ5)5 | a1 . . . a5 = 1} acts Vψ, xj 7→ ajxj .
V ◦

ψ : a crepant resolution of quotient singularity of Vψ/G.
Devide further by action (x1, . . . , x5) 7→ (a−1x1, x2, . . . , x5) (a ∈ µ5).

24



3.3. Picard-Fuchs equation on the mirror V ◦

Ω : holomorphic 3-form on V ◦
ψ induced from

ResVψ

(
ψ
f

∑5
j=1(−1)j−1xjdx1 ∧ · · · ∧ (dxj)∧ ∧ · · · ∧ dx5

)
z := 1/ψ5, δ := zd/dz.

L := δ4 + 5z(5δ + 1)(5δ + 2)(5δ + 3)(5δ + 4)
is Picard-Fuchs differential operator for Ω, i.e., LΩ = 0 via
Gauss-Manin connection ∇.

z = 0 : maximally unipotent monodromy point,
z = ∞ : Gepner point,
z = −5−5 : conifold point.
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yj (0 ≤ j ≤ 3) : basis of solutions for L. y0 =
∑∞

n=0
(5n)!
(n!)5 (−z)n,

y1 = y0 log(−z) + 5
∑∞

n=1
(5n)!
(n!)5

( ∑5n
j=n+1

1
j

)
(−z)n.

t := y1/y0, u := t/2πi : canonical parameters
q := et = e2πiu : canonical coordinate, which is specific chart of

log structure and gives mirror map.

ΦV ◦

GM =
5
2

(y1

y0

y2

y0
− y3

y0

)
: Gauss-Manin potential of V ◦

z .

Ω̃ := Ω/y0. Yukawa coupling at z = 0 is

Y := −
∫

V ◦
Ω̃ ∧∇δ∇δ∇δΩ̃ =

5
(1 + 55z)y0(z)2

(q

z

dz

dq

)3

.
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3.4. A-model of the quintic V

T1 = H : hyperplane section of V in P4

K(V ) = R>0T1 : Kähler cone of V .
u : coordinate of CT1, t := 2πiu.
Complexified Kähler moduli is

KM(V ) := (H2(V,R) + iK(V ))/H2(V,Z) ∼→ ∆∗,

uT1 7→ q := e2πiu.

C ∈ H2(V,Z) : homology class of line on V .
T 1 ∈ H4(V,Z) : Poincaré dual of C.
For β = dC ∈ H2(V,Z), define qβ := q

R

β
T 1

= qd.
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Gromov-Witten potential of V is

ΦV
GW :=

1
6

∫
V

(tT1)3 +
∑

0 ̸=β∈H2(V,Z)

Ndq
β =

5t3

6
+

∑
d>0

Ndq
d.

Here Gomov-Witten invariant Nd is

M0,0(P4, d) π1←− M0,1(P4, d) e1−→ P4,

Nd :=
∫

M0,0(P4,d)

c5d+1(π1∗e
∗
1OP4(5)).

Nd = 0 if d ≤ 0.
Nd =

∑
k|d nd/kk−3, nd/k is instanton number.
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3.5. Z-structure

B-model HV ◦
:

f : X → S∗ family of quintic-mirrors over punctured nbd of p0.
HV ◦

Z : extension of R3f∗Z over Slog.
N : monodromy logarithm at p0,
W = W (N) : monodromy weight filtration.
Define Wk,Z := Wk ∩HV ◦

Z for all k.

b ∈ Slog : base point.
g0, g1, g3, g2 : symplectic Z-basis of HV ◦

Z (b) for cup product,
s.t. g0, . . . , gk generate W2k(b) for all k.

For s ∈ Olog
S ⊗O HV ◦

O , followings are equivalent.
(1) s belongs to HV ◦

Z .
(2) ∇s = 0 (∇ = ∇GM) and s(b) ∈ HV ◦

Z (b) for some b ∈ Slog.
(3) ∇s = 0 and s(grW

k ) ∈ grW
k,Z for k := min{l | s ∈ Olog

S ⊗ Wl}.
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A-model HV :
∇ = ∇middle : A-model connection from 3.6 (3A) below.
For s ∈ Olog

S ⊗HV
O, define s ∈ HV

Z if ∇s = 0 and s(grW
2p) ∈ H3−p,3−p

(V,Z), W2q :=
⊕

l≤q H3−l,3−l(V ), p := min{q | s ∈ Olog
S ⊗ W2q}.

0 ∈ S = ∆, b ∈ τ−1(0) ⊂ Slog. Olog
S,b = OS,0[t] = C{q}[t] : stalk at b.

q = et = e2πiu, u = x + iy with x, y real.

For s ∈ Olog
S ⊗O HV

O, followings are equivalent.
(4) s belongs to HV

Z .
(5) ∇s = 0 and s(b) ∈ HV

Z (b) for some b ∈ Slog.
(6) ∇s = 0 and, for fixed x = 0, limit as y → ∞ of exp(iy(−N))s

over Slog belongs to
⊕

p Hp,p(V,Z).
(7) ∇s = 0 and specialization x 7→ 0 of limit of exp(iy(−N))s over

Slog with x fixed and y → ∞ belongs to
⊕

p Hp,p(V,Z).
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3.6. Correspondence table

We use ΦV
GW = ΦV ◦

GM =: Φ.

(1A) Polarization of A-model of V .

S(α, β) := (−1)p

∫
V

α ∪ β (α ∈ Hp,p(V ), β ∈ H3−p,3−p(V )).

(1B) Polarization of B-model of V ◦.

Q(α, β) := (−1)3(3−1)/2

∫
V ◦

α ∪ β = −
∫

V ◦
α ∪ β (α, β ∈ H3(V ◦)).
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(2A) Specified sections inducing Z-basis of grW for A-model of V .

T0 := 1 ∈ H0(V,Z), T1 := H ∈ H2(V,Z),

T 1 := C ∈ H4(V,Z), T 0 := [pt] ∈ H6(V,Z),

Then S(T0, T
0) = 1 and S(T1, T

1) = −1.
Hence T0, T1, −T 0, T 1 form symplectic base for S.
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(2B) Specified sections inducing Z-basis of grW for B-model of V ◦.

HO =
⊕

p

Ip,p, where Ip,p := W2p ∩ Fp ∼→ grW2p .

Since N(grW
2p) = 0, grW

2p is a constant sheaf and hence

grW2p ⊃ grW
2p ⊃ (grW

2p)Z := W2p,Z/W2p−1,Z.

Take
e0 := Ω̃ ∈ I3,3, e1 ∈ I2,2, e1 ∈ I1,1, e0 = g0 ∈ I0,0

inducing generators of (grW
2p)Z, and Q(e0, e

0) = 1, Q(e1, e
1) = −1.

Hence e0, e1, −e0, e1 form symplectic base for Q.
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(3A) A-model connection ∇ = ∇middle of V .

∇δT
0 := 0, ∇δT

1 := T 0,

∇δT1 :=
1

(2πi)3
d3Φ
du3

T 1 =
(
5 +

1
(2πi)3

d3Φhol

du3

)
T 1,

∇δT0 := T1.

∇ is flat, i.e., ∇2 = 0.

(3B) B-model connection ∇ = ∇GM of V ◦.

∇δe
0 = 0, ∇δe

1 = e0,

∇δe1 =
1

(2πi)3
d3Φ
du3

e1 = Y e1 =
5

(1 + 55)y0(z)2
(q

z

dz

dq

)3

e1,

∇δe0 = e1.
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(4A) ∇-flat Z-basis for HV
Z .

s0 := T 0, s1 := T 1 − uT 0 = exp(−uH)T 1,

s1 := T1 −
1

(2πi)3
d2Φ
du2

T 1 +
1

(2πi)3
dΦ
du

T 0

= exp(−uH)T1 −
( ∑

d>0

Ndd
2

2πi
qd

)
T 1 +

( ∑
d>0

Ndd

(2πi)2
qd

)
T 0,

s0 := T0 − uT1 +
1

(2πi)3
(
u

d2Φ
du2

− dΦ
du

)
T 1 − 1

(2πi)3
(
u

dΦ
du

− 2Φ
)
T 0

= exp(−uH)T0 +
( ∑

d>0

Ndd
2

2πi
uqd −

∑
d>0

Ndd

(2πi)2
qd

)
T 1

−
( ∑

d>0

Ndd

(2πi)2
uqd −

∑
d>0

2Nd

(2πi)3
qd

)
T 0.
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(4B) ∇-flat Z-basis for HV ◦

Z .

s0 := e0, s1 := e1 − ue0,

s1 := e1 −
1

(2πi)3
d2Φ
du2

e1 +
1

(2πi)3
dΦ
du

e0,

s0 := e0 − ue1 +
1

(2πi)3
(
u

d2Φ
du2

− dΦ
du

)
e1 − 1

(2πi)3
(
u

dΦ
du

− 2Φ
)
e0.

36



(5A) Monodromy logarithm for A-model of V around q0.

Ns0 = 0, Ns1 = −s0, Ns1 = −5s1, Ns0 = −s1.

Matrix of monodromy logarithm N via basis s0, s1, s1, s0 coincides
with matrix of cup product with −H via basis T 0, T 1, T1, T0.

(5B) Monodromy logarithm for B-model of V ◦ around p0.

Ns0 = 0, Ns1 = −s0, Ns1 = −5s1, Ns0 = −s1.
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(6A) T 0 = s0, T 1 = s1 + us0,

T1 = s1 +
1

(2πi)3
d2Φ
du2

s1 +
1

(2πi)3
(
u

d2Φ
du2

− dΦ
du

)
s0,

=
(
s1 + 5us1 +

5
2
u2s0

)
+

( ∑
d>0

Ndd
2

2πi
qd

)
s1

+
( ∑

d>0

Ndd
2

2πi
uqd −

∑
d>0

Ndd

(2πi)2
qd

)
s0

T0 = 1V = s0 + us1 +
1

(2πi)3
dΦ
du

s1 +
1

(2πi)3
(
u

dΦ
du

− 2Φ
)
s0

=
(
s0 + us1 +

5
2
u2s1 +

5
6
u3s0

)
+

( ∑
d>0

Ndd

(2πi)2
qd

)
s1

+
( ∑

d>0

Ndd

(2πi)2
uqd − 2

∑
d>0

Nd

(2πi)3
qd

)
s0.
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(6B) e0 = s0, e1 = s1 + us0,

e1 = s1 +
1

(2πi)3
d2Φ
du2

s1 +
1

(2πi)3
(
u

d2Φ
du2

− dΦ
du

)
s0,

=
(
s1 + 5us1 +

5
2
u2s0

)
+

( ∑
d>0

Ndd
2

2πi
qd

)
s1

+
( ∑

d>0

Ndd
2

2πi
uqd −

∑
d>0

Ndd

(2πi)2
qd

)
s0

e0 = Ω̃ = s0 + us1 +
1

(2πi)3
dΦ
du

s1 +
1

(2πi)3
(
u

dΦ
du

− 2Φ
)
s0

=
(
s0 + us1 +

5
2
u2s1 +

5
6
u3s0

)
+

( ∑
d>0

Ndd

(2πi)2
qd

)
s1

+
( ∑

d>0

Ndd

(2πi)2
uqd − 2

∑
d>0

Nd

(2πi)3
qd

)
s0

= s0 +
1

2πi

y1

y0
s1 +

5
(2πi)2

y2

y0
s1 +

5
(2πi)3

y3

y0
s0.
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3.9. Proof of (3) ⇒ (4) in Introduction

Proof 1, by nilpotent orbit theorem.
S∗ := KM(V ) ⊂ S := KM(V ) for A-model,
S∗ := M(V ◦) ⊂ S := M(V ◦) for B-model.
S endowed with log structure associated to S r S∗.
VPHS on S∗ with unipotent monodromy along S r S∗ extends
uniquely to a LVPH on S by LH theoretic interpretation of
nilpotent orbit theorem of Schmid.
1 = T0 (resp. [pt] = T 0) for A-model and
Ω̃ = e0 (resp. g0 = e0) for B-model extend over S
as canonical extension (resp. invariant section). ¤
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Proof 2, by correspondence table in 3.6.

S̃log := R × i(0,∞] ⊃ S̃∗ := R × i(0,∞)y y
Slog ⊃ S∗

τ

y
S

The coordinate u of S̃∗ extends over S̃log.
u0 := 0 + i∞ ∈ S̃log 7→ b := 0̄ + i∞ ∈ Slog 7→ q = 0 ∈ S
which corresponds to q0 for A-model and p0 for B-model.
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(a) HZ := HV
Z for A-model and HV ◦

Z for B-model over S∗ with
respective symplectic basis s0, s1,−s0, s1 extends over Slog with
extended symplectic basis.

Note that to fix a base point u = u0 on S̃log is equivalent to fix
a base point b on Slog and also a branch of (2πi)−1 log q.

(b) Regarding H0 := HZ,u0 = HZ,b as a constant sheaf on Slog,
we have an isomorphism Olog

S ⊗ HZ ≅ Olog
S ⊗ H0 of Olog

S -modules
whose restriction induces 1 ⊗ HZ,b = 1 ⊗ H0.

(c) τ∗(Olog
S ⊗ HZ) yields Deligne canonical extension of HOS∗ over S.

T0, T1, T
1, T 0 and e0, e1, e

1, e0 yield monodromy invariant bases of
OS∗-modules respecting Hodge filtration for each case.
These bases and hence Hodge filtrations extend over q = 0.
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(c) follows from (1), (2), (3) below. R := Olog
S,b = C{q}[u].

(1) Tj , T
j and ej , e

j are R-linear combinations of respective sj , s
j .

(2) sj , s
j are R-linear combinations of sj(b), sj(b) ∈ HZ,b = H0.

(3) Coefficients h ∈ R of the composition of (1) and (2) are
monodromy invariant holomorphic on S∗ with limq→0 qh = 0.
Hence, q = 0 is a removable singularity of h and value of h at q = 0
is determined.

Thus, PVHS (HZ, 〈 , 〉,HO) of type (Λ, Γ(σ)gp) over S∗ extends to
pre-PLH of type Φ = (Λ, σ,Γ(σ)gp) over S, where σ := exp(R≥0N)
with N from 0 (4). (Note that N here is −N of N in Section 1.)
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Admissibility is obvious in pure case.
Griffiths transversality follows from definitions of T0, T1, T

1, T 0,
e0, e1, e

1, e0, and ∇middle, ∇GM.
Positivity: We check for B-model. A-model is analogous.
Fy := exp(iy(−N))F (u0) ∈ Ď.
v3(y) := exp(iy(−N))e0(u0) and exp(iy(−N))e1(u0) form basis
of F 2

y respecting F 3
y .

Compute basis v2(y) of F 2
y ∩ F 1

y = F 2
y ∩ (F 3

y )⊥ for Q.
Check that coefficients of highest terms in y of Hodge norms
i3Q(v3(y), v3(y)) and iQ(v2(y), v2(y)) are both positive.
The extension of the specific sections has already seen. ¤
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4. Proof of (6) in Introduction

First announcement on Log Hodge Theory [KU99] was published in
proceeding of CRM Summer School 1998, Banff.

We notice that we constructed complete fan Σ for classifying space
D of polarized Hodge structure with hp,q = 1 (p + q = 3, p, q ≥ 0) as
example in book [KU09], and also constructed weak fan which graphs
any given admissible normal function over Γ\DΣ in paper [KNU13p],
appearing soon, in quite general setting.
In particular, Néron model JLQ

in Intro (6) is already constructed.
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In order to make monodromy of T around MUM point p0 unipotent,
we take double cover z1/2.

Let H := HV ◦
. We are looking for extension H

0 → H → H → Z → 0

of LMH with liftings 1Z and 1F of 1 ∈ Z respecting lattice and Hodge
filtration, respectively.
Truncated normal function should be T , i.e.,

Q(1F − 1Z,Ω) =
∫ C+

C−

Ω = T ,

where Q is polarization of H.
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To find such LMH, we use basis e0, e1, e
1, e0 respecting Deligne decomp.

of (M,F ) from 3.6 (2B), ∇-flat integral basis s0, s1, s
1, s0 from 3.6 (4B).

We also use integral periods from 3.3 as ηj := (2πi)−jyj for j = 0, 1 and
ηj := 5(2πi)−jyj for j = 2, 3.
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First, translate trivial extension (grW )Q = Q ⊕HQ by T e0 and define
1Z := 1 + T e0 to make local system LQ.

To find 1F , write 1F − 1Z = ae0 + be1 + ce1 − T e0 with a, b, c ∈ Olog.
Griffiths transversality condition on 1F − 1Z is understood as vanishing
of coefficient of e0 in ∇(1F − 1Z). Using 6 (3B), we have

∇δ(1F − 1Z) = (δa)e0 + (a + δb)e1 +
(
b

1
(2πi)3

d3Φ
du3

+ δc
)
e1 + (c − δT )e0.

Hence, above condition is equivalent to c = δT and a, b arbitrary.
Using relation modulo F 2, we can take a = b = 0. Thus

1F = 1Z + (δT )e1 − T e0.

(1Z, 1F ) is desired element in Ext1LMH(Z,H), and hence 1F − 1Z is
desired admissible normal function.

(6.1) and (6.2) are proved.
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Next, we find splitting of weight filtration W of local system LQ.

Since mondromy of T around p0 : z1/2 = 0, is T 2
∞(T ) = T − η0 ([W07]),

we flat it by T + 1
2η1, which is written as (T + 1

2η1)s0 in H, because
T 2
∞(η1) = η0.

But then, 1
2η1 is added to truncated normal function.

To solve this, using e1 = s1 + us0 (s0 = e0, u = η1/η0), we modify it as

1
2
η0s

1 + (T +
1
2
η1)s0 =

1
2
η0e

1 + T e0.

This is desired splitting of W of local system LQ, and we define

1spl
Z := 1 +

1
2
η0s

1 + (T +
1
2
η1)s0 = 1 +

1
2
η0e

1 + T e0.
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Lifting 1spl
F for 1spl

Z is computed as before, and we get

1spl
F = 1spl

Z + (δT )e1 − T e0.

(1spl
Z , 1spl

F ) is desired split element in Ext1LMH(Z,H).

Note that 1spl
F − 1spl

Z = 1F − 1Q = (δT )e1 − T e0.

For (6.3), recall that weight of A-model is reversed from degree of
cohomology. Then it follows from

1Z − 1spl
Z = −1

2
(η0s

1 + η1s
0) == −1

2
η0e

1.

(6.4) follow from definition of 1Z (or equivalently definition of 1spl
Z ).

In fact, from that we have 1Z − 1 = 1
2η0s

1 + (T + 1
2η1)s0 and hence

L(1Z − 1) = 15
16π2 z1/2s0.
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